No Arabic abstract
Black hole `spectroscopy, i.e. the identification of quasinormal mode frequencies via gravitational wave observations, is a powerful technique for testing the general relativistic nature of black holes. In theories of gravity beyond general relativity perturbed black holes are typically described by a set of coupled wave equations for the tensorial field and the extra scalar/vector degrees of freedom, thus leading to a theory-specific quasinormal mode spectrum. In this paper we use the eikonal/geometric optics approximation to obtain analytic formulae for the frequency and damping rate of the fundamental quasinormal mode of a generalised, theory-agnostic system of equations describing coupled scalar-tensor perturbations of spherically symmetric black holes. Representing an extension of our recent work, the present model includes a massive scalar field, couplings through the field derivatives and first-order frame dragging rotational corrections. Moving away from spherical symmetry, we consider the simple model of the scalar wave equation in a general stationary-axisymmetric spacetime and use the eikonal approximation to compute the quasinormal modes associated with equatorial and nonequatorial photon rings.
In a recent series of papers we have shown how the eikonal/geometrical optics approximation can be used to calculate analytically the fundamental quasinormal mode frequencies associated with coupled systems of wave equations, which arise, for instance, in the study of perturbations of black holes in gravity theories beyond General Relativity. As a continuation to this series, we here focus on the quasinormal modes of nonrotating black holes in scalar Gauss-Bonnet gravity assuming a small-coupling expansion. We show that the axial perturbations are purely tensorial and are described by a modified Regge-Wheeler equation, while the polar perturbations are of mixed scalar-tensor character and are described by a system of two coupled wave equations. When applied to these equations, the eikonal machinery leads to axial modes that deviate from the general relativistic results at quadratic order in the Gauss-Bonnet coupling constant. We show that this result is in agreement with an analysis of unstable circular null orbits around blackholes in this theory, allowing us to establish the geometrical optics-null geodesic correspondence for the axial modes. For the polar modes the small-coupling approximation forces us to consider the ordering between eikonal and small-coupling perturbative parameters; one of which we show, by explicit comparison against numerical data, yields the correct identification of the quasinormal modes of the scalar-tensor coupled system of wave equations. These corrections lift the general relativistic degeneracy between scalar and tensorial eikonal quasinormal modes at quadratic order in Gauss-Bonnet coupling in a way reminiscent of the Zeeman effect. In general, our analytic, eikonal quasinormal mode frequencies (normalized to the General Relativity ones) agree with numerical results with an error of $sim 10%$ in the regime of small coupling constant. (abridged)
The recent detections of gravitational waves from binary systems of black holes are in remarkable agreement with the predictions of General Relativity. In this pedagogical mini-review, I will go through the physics of the different phases of the evolution of black hole binary systems, providing a qualitative physical interpretation of each one of them. I will also briefly describe how these phases would be modified if gravitation were described by a theory extending or deforming General Relativity, or if the binary components turned out to be more exotic compact objects than black holes.
Loop Quantum Gravity (LQG) is a theory that proposes a way to model the behavior of the spacetime in situations where its atomic characteristic arises. Among these situations, the spacetime behavior near the Big Bang or black holes singularity. The detection of gravitational waves, on the other hand, has opened the way to new perspectives in the investigation of the spacetime structure. In this work, by the use of a WKB method introduced by Schutz and Will cite{Schutz:1985zz}, and after improved by Iyer and Will cite{s.iyer-prd35}, we study the gravitational wave spectrum emitted by loop quantum black holes, which correspond to a quantized version of the Schwarzschild spacetime by LQG techniques. From the results obtained, loop quantum black holes have been shown stable under axial gravitational perturbations.
In this work we have considered a model that includes the interaction of gravity and matter fields with Galilean invariance (the so-called derivative coupling) as well as some corresponding black hole type solutions. Quasinormal perturbations of two kinds of matter fields have been computed by different methods. The effect of the derivative coupling in the quasinormal spectrum has been analyzed and evaluated.
The quasinormal modes of charged and uncharged massive scalar fields and also of charged Dirac fields against the background of a charged spherical black hole endowed with a scalar hair have been investigated. Special emphasis has been given to the case where negative scalar charge dominates over the electric charge of the black hole which mimics an Einstein-Rosen bridge. Except for the complete monotonic behaviour of the damping (imaginary part of the quasinormal mode) against the charge of the black hole as opposed to the existence of a peak for the pure RN case, the qualitative behaviour does not appreciably change due to the presence of scalar hair.