Do you want to publish a course? Click here

Monte-Carlo generator of heavy ion collisions DCM-SMM

60   0   0.0 ( 0 )
 Added by Genis Musulmanbekov
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

The new monte-carlo generator of heavy ion collisions, DCM-SMM, based on Dubna Cascade Model (DCM-QGSM) and Statistical Multifragmentation Model (SMM) is described. The model aimed to generate particle--nucleus and nucleus--nucleus collisions at a wide range of energy was created to provide the computer simulation support to new experimental facilities BMN and MPD at the accelerator complex NICA. It can simulate the production of both light particles and nuclear fragments and hyperfragments on the event by event basis.

rate research

Read More

Clustering of the four-nucleon system at kinetic freezeout conditions is studied using path-integral Monte Carlo techniques. This method seeks to improve upon previous calculations which relied on approximate semiclassical methods or few-body quantum mechanics. Estimates are given for the decay probabilities of the 4N system into various light nuclei decay channels and the strength of spatial correlations is characterized. Additionally, a simple model is presented to describe the impact of this clustering on nucleon multiplicity distributions. The effects of a possible modification of the inter-nucleon interaction due to the close critical line (and hypothetical QCD critical point) on the clustering are also studied.
The production of the $X(3872)$ particle in heavy-ion collisions has been contemplated as an alternative probe of its internal structure. To investigate this conjecture, we perform transport calculations of the $X(3872)$ through the fireball formed in nuclear collisions at the LHC. Within a kinetic-rate equation approach as previously used for charmonia, the formation and dissociation of the $X(3872)$ is controlled by two transport parameters, i.e., its inelastic reaction rate and thermal-equilibrium limit in the evolving hot QCD medium. While the equilibrium limit is controlled by the charm production cross section in primordial nucleon-nucleon collisions (together with the spectra of charm states in the medium), the structure information is encoded in the reaction rate. We study how different scenarios for the rate affect the centrality dependence and transverse-momentum ($p_T$) spectra of the $X(3872)$. Larger reaction rates associated with the loosely bound molecule structure imply that it is formed later in the fireball evolution than the tetraquark and thus its final yields are generally smaller by around a factor of two, which is qualitatively different from most coalescence model calculations to date. The $p_T$ spectra provide further information as the later decoupling time within the molecular scenario leads to harder spectra caused by the blue-shift from the expanding fireball.
We study charm production in ultra-relativistic heavy-ion collisions by using the Parton-Hadron-String Dynamics (PHSD) transport approach. The initial charm quarks are produced by the PYTHIA event generator tuned to fit the transverse momentum spectrum and rapidity distribution of charm quarks from Fixed-Order Next-to-Leading Logarithm (FONLL) calculations. The produced charm quarks scatter in the quark-gluon plasma (QGP) with the off-shell partons whose masses and widths are given by the Dynamical Quasi-Particle Model (DQPM), which reproduces the lattice QCD equation-of-state in thermal equilibrium. The relevant cross sections are calculated in a consistent way by employing the effective propagators and couplings from the DQPM. Close to the critical energy density of the phase transition, the charm quarks are hadronized into $D$ mesons through coalescence and/or fragmentation. The hadronized $D$ mesons then interact with the various hadrons in the hadronic phase with cross sections calculated in an effective lagrangian approach with heavy-quark spin symmetry. The nuclear modification factor $R_{AA}$ and the elliptic flow $v_2$ of $D^0$ mesons from PHSD are compared with the experimental data from the STAR Collaboration for Au+Au collisions at $sqrt{s_{NN}}$ =200 GeV and to the ALICE data for Pb+Pb collisions at $sqrt{s_{NN}}$ =2.76 TeV. We find that in the PHSD the energy loss of $D$ mesons at high $p_T$ can be dominantly attributed to partonic scattering while the actual shape of $R_{AA}$ versus $p_T$ reflects the heavy-quark hadronization scenario, i.e. coalescence versus fragmentation. Also the hadronic rescattering is important for the $R_{AA}$ at low $p_T$ and enhances the $D$-meson elliptic flow $v_2$.
Discriminating hadronic molecular and multi-quark states is a long standing problem in hadronic physics. We propose here to utilize relativistic heavy ion collisions to resolve this problem, as exotic hadron yields are expected to be strongly affected by their structures. Using the coalescence model, we find that the exotic hadron yield relative to the statistical model result is typically an order of magnitude smaller for a compact multi-quark state, and larger by a factor of two or more for a loosely bound hadronic molecule. We further find that some of the newly proposed heavy exotic states could be produced and realistically measured at RHIC and LHC.
We study the event-by-event generation of flow vorticity in RHIC Au + Au collisions and LHC Pb + Pb collisions by using the HIJING model. Different definitions of the vorticity field and velocity field are considered. A variety of properties of the vorticity are explored, including the impact parameter dependence, the collision energy dependence, the spatial distribution, the event-by-event fluctuation of the magnitude and azimuthal direction, and the time evolution. In addition, the spatial distribution of the flow helicity is also studied.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا