No Arabic abstract
To determine the epoch of reionization precisely and to reveal the property of inhomogeneous reionization are some of the most important topics of modern cosmology. Existing methods to investigate reionization which use cosmic microwave background, Ly$alpha$ emitters, quasars, or gamma ray bursts, have difficulties in terms of accuracy or event rate. We propose that recently discovered fast luminous blue transients (FLBTs) have a potential as a novel probe of reionization. We study the detectability of FLBTs at the epoch of reionization with upcoming WFIRST Wide-Field Instruments (WFI), using a star formation rate derived from galaxy observations and an event rate of FLBTs proportional to the star formation rate. We find that if FLBTs occur at a rate of 1% of the core-collapse supernova rate, 2 (0.3) FLBTs per year per deg$^2$ at $z>6$ ($z>8$) can be detected by a survey with a limiting magnitude of 26.5 mag in the near-infrared band and a cadence of 10 days. We conclude that the WFIRST supernova deep survey can detect $sim20$ FLBTs at the epoch of reionization in the near future.
Newborn black holes in collapsing massive stars can be accompanied by a fallback disk. The accretion rate is typically super-Eddington and strong disk outflows are expected. Such outflows could be directly observed in some failed explosions of compact (blue supergiants or Wolf-Rayet stars) progenitors, and may be more common than long-duration gamma-ray bursts. Using an analytical model, we show that the fallback disk outflows produce blue UV-optical transients with a peak bolometric luminosity of ~10^(42-43) erg s^-1 (peak R-band absolute AB magnitudes of -16 to -18) and an emission duration of ~ a few to ~ 10 days. The spectra are likely dominated intermediate mass elements, but will lack much radioactive nuclei and iron-group elements. The above properties are broadly consistent with some of the rapid blue transients detected by Pan-STARRS and PTF. This scenario can be distinguished from alternative models using radio observations within a few years after the optical peak.
The discovery of fast radio bursts (FRBs) about a decade ago opened up new possibilities for probing the ionization history of the Intergalactic Medium (IGM). In this paper we study the use of FRBs for tracing the epoch of HeII reionization, using simulations of their dispersion measures. We model dispersion measure contributions from the Milky Way, the IGM (homogeneous and inhomogeneous) and a possible host galaxy as a function of redshift and star formation rate. We estimate the number of FRBs required to distinguish between a model of the Universe in which helium reionization occurred at z = 3 from a model in which it occurred at z = 6 using a 2-sample Kolmogorov-Smirnoff test. We find that if the IGM is homogeneous >1100 FRBs are needed and that an inhomogeneous model in which traversal of the FRB pulse through galaxy halos increases the number of FRBs modestly, to >1600. We also find that to distinguish between a reionization that occurred at z = 3 or z = 3.5 requires ~5700 FRBs in the range 3 < z < 5.
Impulsive radio bursts that are detectable across cosmological distances constitute extremely powerful probes of the ionized Inter-Galactic Medium (IGM), intergalactic magnetic fields, and the properties of space-time itself. Their dispersion measures (DMs) will enable us to detect the missing baryons in the low-redshift Universe and make the first measurements of the mean galaxy halo profile, a key parameter in models of galaxy formation and feedback. Impulsive bursts can be used as cosmic rulers at redshifts exceeding 2, and constrain the dark energy equation-of-state parameter, $w(z)$ at redshifts beyond those readily accessible by Type Ia SNe. Both of these goals are realisable with a sample of $sim 10^4$ fast radio bursts (FRBs) whose positions are localized to within one arcsecond, sufficient to obtain host galaxy redshifts via optical follow-up. It is also hypothesised that gravitational wave events may emit coherent emission at frequencies probed by SKA1-LOW, and the localization of such events at cosmological distances would enable their use as cosmological standard sirens. To perform this science, such bursts must be localized to their specific host galaxies so that their redshifts may be obtained and compared against their dispersion measures, rotation measures, and scattering properties. The SKA can achieve this with a design that has a wide field-of-view, a substantial fraction of its collecting area in a compact configuration (80% within a 3,km radius), and a capacity to attach high-time-resolution instrumentation to its signal path.
The discovery of SN 2018gep (ZTF18abukavn) challenged our understanding of the late-phase evolution of massive stars and their supernovae (SNe). The fast rise in luminosity of this SN (spectroscopically classified as a broad-lined Type Ic SN), indicates that the ejecta interacts with a dense circumstellar medium (CSM), while an additional energy source such as $^{56}$Ni-decay is required to explain the late-time light curve. These features hint at the explosion of a massive star with pre-supernova mass-loss. In this work, we examine the physical origins of rapidly evolving astrophysical transients like SN 2018gep. We investigate the wave-driven mass-loss mechanism and how it depends on model parameters such as progenitor mass and deposition energy, searching for stellar progenitor models that can reproduce the observational data. A model with an ejecta mass $sim ! 2 , M_{odot}$, explosion energy $sim ! 10^{52}$ erg, a circumstellar medium of mass $sim ! 0.3 , M_{odot}$ and radius $sim ! 1000 , R_{odot}$, and a $^{56}$Ni mass of $sim ! 0.3 , M_{odot}$ provides a good fit to the bolometric light curve. We also examine how interaction-powered light curves depend more generally on these parameters, and how ejecta velocities can help break degeneracies. We find both wave-driven mass-loss and mass ejection via pulsational pair-instability can plausibly create the dense CSM in SN 2018gep, but we favor the latter possibility.
We study the morphologies and sizes of galaxies at z>5 using high-resolution cosmological zoom-in simulations from the Feedback In Realistic Environments project. The galaxies show a variety of morphologies, from compact to clumpy to irregular. The simulated galaxies have more extended morphologies and larger sizes when measured using rest-frame optical B-band light than rest-frame UV light; sizes measured from stellar mass surface density are even larger. The UV morphologies are usually dominated by several small, bright young stellar clumps that are not always associated with significant stellar mass. The B-band light traces stellar mass better than the UV, but it can also be biased by the bright clumps. At all redshifts, galaxy size correlates with stellar mass/luminosity with large scatter. The half-light radii range from 0.01 to 0.2 arcsec (0.05-1 kpc physical) at fixed magnitude. At z>5, the size of galaxies at fixed stellar mass/luminosity evolves as (1+z)^{-m}, with m~1-2. For galaxies less massive than M_star~10^8 M_sun, the ratio of the half-mass radius to the halo virial radius is ~10% and does not evolve significantly at z=5-10; this ratio is typically 1-5% for more massive galaxies. A galaxys observed size decreases dramatically at shallower surface brightness limits. This effect may account for the extremely small sizes of z>5 galaxies measured in the Hubble Frontier Fields. We provide predictions for the cumulative light distribution as a function of surface brightness for typical galaxies at z=6.