No Arabic abstract
Newborn black holes in collapsing massive stars can be accompanied by a fallback disk. The accretion rate is typically super-Eddington and strong disk outflows are expected. Such outflows could be directly observed in some failed explosions of compact (blue supergiants or Wolf-Rayet stars) progenitors, and may be more common than long-duration gamma-ray bursts. Using an analytical model, we show that the fallback disk outflows produce blue UV-optical transients with a peak bolometric luminosity of ~10^(42-43) erg s^-1 (peak R-band absolute AB magnitudes of -16 to -18) and an emission duration of ~ a few to ~ 10 days. The spectra are likely dominated intermediate mass elements, but will lack much radioactive nuclei and iron-group elements. The above properties are broadly consistent with some of the rapid blue transients detected by Pan-STARRS and PTF. This scenario can be distinguished from alternative models using radio observations within a few years after the optical peak.
We consider radio emission from a newborn black hole (BH), which is accompanied by a mini-disk with a mass of $lesssim M_odot$. Such a disk can be formed from an outer edge of the progenitors envelope, especially for metal-poor massive stars and/or massive stars in close binaries. The disk accretion rate is typically super-Eddington and an ultrafast outflow with a velocity of $sim 0.1mbox{-}0.3,c$ will be launched into the circumstellar medium. The outflow forms a collisionless shock, and electrons are accelerated and emit synchrotron emission in radio bands with a flux of $sim 10^{26-30} rm erg s^{-1} Hz^{-1}$ days to decades after the BH formation. The model predicts not only a fast UV/optical transient but also quasi-simultaneous inverse-Compton X-ray emission $sim$ a few days after the BH formation, and the discovery of the radio counterpart with coordinated searches will enable us to identify this type of transients. The occurrence rate can be $0.1-10 %$ of the core-collapse supernova rate, which makes them a promising target of dedicated radio observations such as the Jansky VLA Sky Survey.
To determine the epoch of reionization precisely and to reveal the property of inhomogeneous reionization are some of the most important topics of modern cosmology. Existing methods to investigate reionization which use cosmic microwave background, Ly$alpha$ emitters, quasars, or gamma ray bursts, have difficulties in terms of accuracy or event rate. We propose that recently discovered fast luminous blue transients (FLBTs) have a potential as a novel probe of reionization. We study the detectability of FLBTs at the epoch of reionization with upcoming WFIRST Wide-Field Instruments (WFI), using a star formation rate derived from galaxy observations and an event rate of FLBTs proportional to the star formation rate. We find that if FLBTs occur at a rate of 1% of the core-collapse supernova rate, 2 (0.3) FLBTs per year per deg$^2$ at $z>6$ ($z>8$) can be detected by a survey with a limiting magnitude of 26.5 mag in the near-infrared band and a cadence of 10 days. We conclude that the WFIRST supernova deep survey can detect $sim20$ FLBTs at the epoch of reionization in the near future.
We consider black hole formation in failed supernovae when a dense circumstellar medium (CSM) is present around the massive star progenitor. By utilizing radiation hydrodynamical simulations, we calculate the mass ejection of blue supergiants and Wolf-Rayet stars in the collapsing phase and the radiative shock occurring between the ejecta and the ambient CSM. We find that the resultant emission is redder and dimmer than normal supernovae (bolometric luminosity of $sim 10^{40}-10^{41} {rm erg s^{-1}}$, effective temperature of $sim 5times 10^3$ K, and timescale of 10-100 days) and shows a characteristic power-law decay, which may comprise a fraction of intermediate luminosity red transients (ILRTs) including AT 2017be. In addition to searching for the progenitor star in the archival data, we encourage X-ray follow-up observations of such ILRTs $sim$ 1-10 yr after the collapse, targeting the fallback accretion disk.
We investigate the effects of mass loss during the main-sequence (MS) and post-MS phases of massive star evolution on black hole (BH) birth masses. We compute solar metallicity Geneva stellar evolution models of an 85 $M_{odot}$ star with mass-loss rate ($dot{M}$) prescriptions for MS and post-MS phases and analyze under which conditions such models could lead to very massive BHs. Based on the observational constraints for $dot{M}$ of luminous stars, we discuss two possible scenarios that could produce massive BHs at high metallicity. First, if a massive BH progenitor evolves from the observed population of massive MS stars known as WNh stars, we show that its average post-MS mass-loss rate has to be less than $1,times10^{-5},M_{odot}$/yr. However, this is lower than the typical observed mass-loss rates of luminous blue variables (LBV). Second, a massive BH progenitor could evolve from a yet undetected population of $80-85$ $M_{odot}$ stars with strong surface magnetic fields, which could quench mass loss during the evolution. In this case, the average mass-loss rate during the post-MS LBV phase has to be less than $5,times10^{-5},M_{odot}$/yr to produce 70 $M_{odot}$ BHs. We suggest that LBVs that explode as SNe have large envelopes and small cores that could be prone to explosion, possibly evolving from binary interaction (either mergers or mass gainers that do not fully mix). Conversely, LBVs that directly collapse to BHs could have evolve from massive single stars or binary-star mergers that fully mix, possessing large cores that would favor BH formation.
A dormant supermassive black hole lurking in the center of a galaxy will be revealed when a star passes close enough to be torn apart by tidal forces, and a flare of electromagnetic radiation is emitted when the bound fraction of the stellar debris falls back onto the black hole and is accreted. Here we present the third candidate tidal disruption event discovered in the GALEX Deep Imaging Survey: a 1.6x10^{43} erg s^{-1} UV/optical flare from a star-forming galaxy at z=0.1855. The UV/optical SED during the peak of the flare measured by GALEX and Palomar LFC imaging can be modeled as a single temperature blackbody with T_{bb}=1.7x10^{5} K and a bolometric luminosity of 3x10^{45} erg s^{-1}, assuming an internal extinction with E(B-V)_{gas}=0.3. The Chandra upper limit on the X-ray luminosity during the peak of the flare, L_{X}(2-10 keV)< 10^{41} erg s^{-1}, is 2 orders of magnitude fainter than expected from the ratios of UV to X-ray flux density observed in active galaxies. We compare the light curves and broadband properties of all three tidal disruption candidates discovered by GALEX, and find that (1) the light curves are well fitted by the power-law decline expected for the fallback of debris from a tidally disrupted solar-type star, and (2) the UV/optical SEDs can be attributed to thermal emission from an envelope of debris located at roughly 10 times the tidal disruption radius of a ~10^{7} M_sun central black hole. We use the observed peak absolute optical magnitudes of the flares (-17.5 > M_{g} > -18.9) to predict the detection capabilities of upcoming optical synoptic surveys. (Abridged)