Do you want to publish a course? Click here

Metric of a rotating charged magnetized sphere

72   0   0.0 ( 0 )
 Added by Vladimir S. Manko
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Stationary axisymmetric metric describing the exterior field of a rotating, charged sphere endowed with magnetic dipole moment is presented and discussed. It has a remarkably simple multipole structure defined by only four nonzero Hoenselaers-Perjes relativistic moments.

rate research

Read More

We study the motion of a charged particle around a weakly magnetized rotating black hole. We classify the fate of a charged particle kicked out from the innermost stable circular orbit. We find that the final fate of the charged particle depends mostly on the energy of the particle and the radius of the orbit. The energy and the radius in turn depend on the initial velocity, the black hole spin, and the magnitude of the magnetic field. We also find possible evidence for the existence of bound motion in the vicinity of the equatorial plane.
The existence of quintessential dark energy around a black hole has considerable consequences on its spacetime geometry. Hence, in this article, we explore its effect on horizons and the silhouette generated by a Kerr-Newman black hole in quintessential dark energy. Moreover, to analyze the deflection angle of light, we utilize the Gauss-Bonnet theorem. The obtained result demonstrates that, due to the dragging effect, the black hole spin elongates its shadow in the direction of the rotational axis, while increases the deflection angle. On the other hand, the black hole charge diminishing its shadow, as well as the angle of lights deflection. Besides, both spin and charge significantly increase the distortion effect in the black holes shadow. The quintessence parameter gamma, increases the shadow radius, while decreases the distortion effect at higher values of charge and spin parameters.
We obtain a perturbative solution for rotating charged black holes in 5-dimensional Einstein-Maxwell-Chern-Simons theory with a negative cosmological constant. We start from a small undeformed Kerr-AdS solution and use the electric charge as a perturbative parameter to build up black holes with equal-magnitude angular momenta up to forth order. These black hole solutions are described by three parameters, the charge, horizon radius and horizon angular velocity. We determine the physical quantities of these black holes and study their dependence on the parameters of black holes and arbitrary Chern-Simons coefficient. In particular, for values of CS coupling constant beyond its supergravity amount, due to a rotational instability, counterrotating black holes arise. Also the rotating solutions appear to have vanishing angular momenta and do not manifest uniquely by their global charges.
A family of models of counterrotating and rotating relativistic thin discs of infinite extension based on a charged and magnetized Kerr-NUT metric are constructed using the well-known displace, cut and reflect method extended to solutions of vacuum Einstein-Maxwell equations. The metric considered has as limiting cases a charged and magnetized Taub-NUT solution and the well known Kerr-Newman solutions. We show that for Kerr-Newman fields the eigenvalues of the energy-momentum tensor of the disc are for all the values of the parameters real quantities so that these discs do not present heat flow in any case, whereas for charged and magnetized Kerr-NUT and Taub-NUT fields we find always regions with heat flow. We also find a general constraint over the counterrotating tangential velocities needed to cast the surface energy-momentum tensor of the disc as the superposition of two counterrotating charged dust fluids. We show that, in general, it is not possible to take the two counterrotating fluids as circulating along electrogeodesics nor take the two counterrotating tangential velocities as equal and opposite.
In this paper, we extend the study of the relationship between the photon sphere and the thermodynamic phase transition, especially the reentrant phase transition, to this black hole background. According to the number of the thermodynamic critical points, the black hole systems are divided into four cases with different values of Born-Infeld parameter b, where the black hole systems can have no phase transition, reentrant phase transition, or Van der Waals-like phase transition. For these different cases, we obtain the corresponding phase structures in pressure-temperature diagram and temperature-specific volume diagram. The tiny differences between these cases are clearly displayed. On the other hand, the radius rps and the minimal impact parameter ups of the photon sphere are calculated via the effective potential of the radial motion of photons. For different cases, rps and ups are found to have different behaviors. In particular, with the increase of rps or ups, the temperature possesses a decrease-increase-decrease-increase behavior for fixed pressure if there exists the reentrant phase transition. While for fixed temperature, the pressure will show an increase-decrease-increase-decrease behavior instead. These behaviors are quite different from that of the Van der Waals-like phase transition. Near the critical point, the changes of rps and ups among the black hole phase transition confirm an universal critical exponent 12. Therefore, all the results indicate that, for the charged Born-Infeld-AdS black holes, not only the Van der Waals-like phase transition, but also the reentrant phase transition can be reflected through the photon sphere.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا