Do you want to publish a course? Click here

Dynamic Toolbox for ETRINV

52   0   0.0 ( 0 )
 Added by Tillmann Miltzow
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Recently, various natural algorithmic problems have been shown to be $exists mathbb{R}$-complete. The reduction relied in many cases on the $exists mathbb{R}$-completeness of the problem ETR-INV, which served as a useful intermediate problem. Often some strengthening and modification of ETR-INV was required. This lead to a cluttered situation where no paper included all the previous details. Here, we give a streamlined exposition in a self-contained manner. We also explain and prove various universality results regarding ETR-INV. These notes should not be seen as a research paper with new results. However, we do describe some refinements of earlier results which might be useful for future research. We plan to extend and update this exposition as seems fit.



rate research

Read More

We prove essentially tight lower bounds, conditionally to the Exponential Time Hypothesis, for two fundamental but seemingly very different cutting problems on surface-embedded graphs: the Shortest Cut Graph problem and the Multiway Cut problem. A cut graph of a graph $G$ embedded on a surface $S$ is a subgraph of $G$ whose removal from $S$ leaves a disk. We consider the problem of deciding whether an unweighted graph embedded on a surface of genus $g$ has a cut graph of length at most a given value. We prove a time lower bound for this problem of $n^{Omega(g/log g)}$ conditionally to ETH. In other words, the first $n^{O(g)}$-time algorithm by Erickson and Har-Peled [SoCG 2002, Discr. Comput. Geom. 2004] is essentially optimal. We also prove that the problem is W[1]-hard when parameterized by the genus, answering a 17-year old question of these authors. A multiway cut of an undirected graph $G$ with $t$ distinguished vertices, called terminals, is a set of edges whose removal disconnects all pairs of terminals. We consider the problem of deciding whether an unweighted graph $G$ has a multiway cut of weight at most a given value. We prove a time lower bound for this problem of $n^{Omega(sqrt{gt + g^2+t}/log(g+t))}$, conditionally to ETH, for any choice of the genus $gge0$ of the graph and the number of terminals $tge4$. In other words, the algorithm by the second author [Algorithmica 2017] (for the more general multicut problem) is essentially optimal; this extends the lower bound by the third author [ICALP 2012] (for the planar case). Reductions to planar problems usually involve a grid-like structure. The main novel idea for our results is to understand what structures instead of grids are needed if we want to exploit optimally a certain value $g$ of the genus.
Ensuring fairness in computational problems has emerged as a $key$ topic during recent years, buoyed by considerations for equitable resource distributions and social justice. It $is$ possible to incorporate fairness in computational problems from several perspectives, such as using optimization, game-theoretic or machine learning frameworks. In this paper we address the problem of incorporation of fairness from a $combinatorial$ $optimization$ perspective. We formulate a combinatorial optimization framework, suitable for analysis by researchers in approximation algorithms and related areas, that incorporates fairness in maximum coverage problems as an interplay between $two$ conflicting objectives. Fairness is imposed in coverage by using coloring constraints that $minimizes$ the discrepancies between number of elements of different colors covered by selected sets; this is in contrast to the usual discrepancy minimization problems studied extensively in the literature where (usually two) colors are $not$ given $a$ $priori$ but need to be selected to minimize the maximum color discrepancy of $each$ individual set. Our main results are a set of randomized and deterministic approximation algorithms that attempts to $simultaneously$ approximate both fairness and coverage in this framework.
74 - Sujoy Bhore , Rahul Jain 2021
The problem of graph Reachability is to decide whether there is a path from one vertex to another in a given graph. In this paper, we study the Reachability problem on three distinct graph families - intersection graphs of Jordan regions, unit contact disk graphs (penny graphs), and chordal graphs. For each of these graph families, we present space-efficient algorithms for the Reachability problem. For intersection graphs of Jordan regions, we show how to obtain a good vertex separator in a space-efficient manner and use it to solve the Reachability in polynomial time and $O(m^{1/2}log n)$ space, where $n$ is the number of Jordan regions, and $m$ is the total number of crossings among the regions. We use a similar approach for chordal graphs and obtain a polynomial-time and $O(m^{1/2}log n)$ space algorithm, where $n$ and $m$ are the number of vertices and edges, respectively. However, we use a more involved technique for unit contact disk graphs (penny graphs) and obtain a better algorithm. We show that for every $epsilon> 0$, there exists a polynomial-time algorithm that can solve Reachability in an $n$ vertex directed penny graph, using $O(n^{1/4+epsilon})$ space. We note that the method used to solve penny graphs does not extend naturally to the class of geometric intersection graphs that include arbitrary size cliques.
In analogy with the regularity lemma of Szemeredi, regularity lemmas for polynomials shown by Green and Tao (Contrib. Discrete Math. 2009) and by Kaufman and Lovett (FOCS 2008) modify a given collection of polynomials calF = {P_1,...,P_m} to a new collection calF so that the polynomials in calF are pseudorandom. These lemmas have various applications, such as (special cases) of Reed-Muller testing and worst-case to average-case reductions for polynomials. However, the transformation from calF to calF is not algorithmic for either regularity lemma. We define new notions of regularity for polynomials, which are analogous to the above, but which allow for an efficient algorithm to compute the pseudorandom collection calF. In particular, when the field is of high characteristic, in polynomial time, we can refine calF into calF where every nonzero linear combination of polynomials in calF has desirably small Gowers norm. Using the algorithmic regularity lemmas, we show that if a polynomial P of degree d is within (normalized) Hamming distance 1-1/|F| -eps of some unknown polynomial of degree k over a prime field F (for k < d < |F|), then there is an efficient algorithm for finding a degree-k polynomial Q, which is within distance 1-1/|F| -eta of P, for some eta depending on eps. This can be thought of as decoding the Reed-Muller code of order k beyond the list decoding radius (finding one close codeword), when the received word P itself is a polynomial of degree d (with k < d < |F|). We also obtain an algorithmic version of the worst-case to average-case reductions by Kaufman and Lovett. They show that if a polynomial of degree d can be weakly approximated by a polynomial of lower degree, then it can be computed exactly using a collection of polynomials of degree at most d-1. We give an efficient (randomized) algorithm to find this collection.
To date, the only way to argue polynomial lower bounds for dynamic algorithms is via fine-grained complexity arguments. These arguments rely on strong assumptions about specific problems such as the Strong Exponential Time Hypothesis (SETH) and the Online Matrix-Vector Multiplication Conjecture (OMv). While they have led to many exciting discoveries, dynamic algorithms still miss out some benefits and lessons from the traditional ``coarse-grained approach that relates together classes of problems such as P and NP. In this paper we initiate the study of coarse-grained complexity theory for dynamic algorithms. Below are among questions that this theory can answer. What if dynamic Orthogonal Vector (OV) is easy in the cell-probe model? A research program for proving polynomial unconditional lower bounds for dynamic OV in the cell-probe model is motivated by the fact that many conditional lower bounds can be shown via reductions from the dynamic OV problem. Since the cell-probe model is more powerful than word RAM and has historically allowed smaller upper bounds, it might turn out that dynamic OV is easy in the cell-probe model, making this research direction infeasible. Our theory implies that if this is the case, there will be very interesting algorithmic consequences: If dynamic OV can be maintained in polylogarithmic worst-case update time in the cell-probe model, then so are several important dynamic problems such as $k$-edge connectivity, $(1+epsilon)$-approximate mincut, $(1+epsilon)$-approximate matching, planar nearest neighbors, Chans subset union and 3-vs-4 diameter. The same conclusion can be made when we replace dynamic OV by, e.g., subgraph connectivity, single source reachability, Chans subset union, and 3-vs-4 diameter. Lower bounds for $k$-edge connectivity via dynamic OV? (see the full abstract in the pdf file).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا