No Arabic abstract
We show that complex semisimple quantum groups, that is, Drinfeld doubles of $ q $-deformations of compact semisimple Lie groups, satisfy a categorical version of the Baum-Connes conjecture with trivial coefficients. This approach, based on homological algebra in triangulated categories, is compatible with the previously studied deformation picture of the assembly map, and allows us to define an assembly map with arbitrary coefficients for these quantum groups.
We calculate the Plancherel formula for complex semisimple quantum groups, that is, Drinfeld doubles of $ q $-deformations of compact semisimple Lie groups. As a consequence we obtain a concrete description of their associated reduced group $ C^* $-algebras. The main ingredients in our proof are the Bernstein-Gelfand-Gelfand complex and the Hopf trace formula.
We define and study an analogue of the Baum-Connes assembly map for complex semisimple quantum groups, that is, Drinfeld doubles of $ q $-deformations of compact semisimple Lie groups. Our starting point is the deformation picture of the Baum-Connes assembly map for a complex semisimple Lie group $ G $, which allows one to express the $ K $-theory of the reduced group $ C^* $-algebra of $ G $ in terms of the $ K $-theory of its associated Cartan motion group. The latter can be identified with the semidirect product of the maximal compact subgroup $ K $ acting on $ mathfrak{k}^* $ via the coadjoint action. In the quantum case the role of the Cartan motion group is played by the Drinfeld double of the classical group $ K $, whose associated group $ C^* $-algebra is the crossed product of $ C(K) $ with respect to the adjoint action of $ K $. Our quantum assembly map is obtained by varying the deformation parameter in the Drinfeld double construction applied to the standard deformation $ K_q $ of $ K $. We prove that the quantum assembly map is an isomorphism, thus providing a description of the $ K $-theory of complex quantum groups in terms of classical topology. Moreover, we show that there is a continuous field of $ C^* $-algebras which encodes both the quantum and classical assembly maps as well as a natural deformation between them. It follows in particular that the quantum assembly map contains the classical Baum-Connes assembly map as a direct summand.
We study actions of semisimple Hopf algebras H on Weyl algebras A over a field of characteristic zero. We show that the action of H on A must factor through a group algebra; in other words, if H acts inner faithfully on A, then H is cocommutative. The techniques used include reduction modulo a prime number and the study of semisimple cosemisimple Hopf actions on division algebras.
The $K_0$-group of the C*-algebra of multipullback quantum complex projective plane is known to be $mathbb{Z}^3$, with one generator given by the C*-algebra itself, one given by the section module of the noncommutative (dual) tautological line bundle, and one given by the Milnor module associated to a generator of the $K_1$-group of the C*-algebra of Calow-Matthes quantum 3-sphere. Herein we prove that these Milnor modules are isomorphic either to the section module of a noncommutative vector bundle associated to the $SU_q(2)$-prolongation of the Heegaard quantum 5-sphere $S^5_H$ viewed as a $U(1)$-quantum principal bundle, or to a complement of this module in the rank-four free module. Finally, we demonstrate that one of the above Milnor modules always splits into the direct sum of the rank-one free module and a rank-one non-free projective module that is emph{not} associated with $S^5_H$.
A general form of contractive idempotent functionals on coamenable locally compact quantum groups is obtained, generalising the result of Greenleaf on contractive measures on locally compact groups. The image of a convolution operator associated to a contractive idempotent is shown to be a ternary ring of operators. As a consequence a one-to-one correspondence between contractive idempotents and a certain class of ternary rings of operators is established.