Do you want to publish a course? Click here

The Plancherel formula for complex semisimple quantum groups

172   0   0.0 ( 0 )
 Added by Christian Voigt
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We calculate the Plancherel formula for complex semisimple quantum groups, that is, Drinfeld doubles of $ q $-deformations of compact semisimple Lie groups. As a consequence we obtain a concrete description of their associated reduced group $ C^* $-algebras. The main ingredients in our proof are the Bernstein-Gelfand-Gelfand complex and the Hopf trace formula.



rate research

Read More

78 - Christian Voigt 2019
We show that complex semisimple quantum groups, that is, Drinfeld doubles of $ q $-deformations of compact semisimple Lie groups, satisfy a categorical version of the Baum-Connes conjecture with trivial coefficients. This approach, based on homological algebra in triangulated categories, is compatible with the previously studied deformation picture of the assembly map, and allows us to define an assembly map with arbitrary coefficients for these quantum groups.
We provide the first formulae for the weights of all simple highest weight modules over Kac-Moody algebras. For generic highest weights, we present a formula for the weights of simple modules similar to the Weyl-Kac character formula. For the remaining highest weights, the formula fails in a striking way, suggesting the existence of multiplicity-free Macdonald identities for affine root systems.
We discuss the structure of the Motzkin algebra $M_k(D)$ by introducing a sequence of idempotents and the basic construction. We show that $cup_{kgeq 1}M_k(D)$ admits a factor trace if and only if $Din {2cos(pi/n)+1|ngeq 3}cup [3,infty)$ and higher commutants of these factors depend on $D$. Then a family of irreducible bimodules over the factors are constructed. A tensor category with $A_n$ fusion rule is obtained from these bimodules.
152 - Wen-Wei Li 2021
We stabilize the full Arthur-Selberg trace formula for the metaplectic covering of symplectic groups over a number field. This provides a decomposition of the invariant trace formula for metaplectic groups, which encodes information about the genuine $L^2$-automorphic spectrum, into a linear combination of stable trace formulas of products of split odd orthogonal groups via endoscopic transfer. By adapting the strategies of Arthur and Moeglin-Waldspurger from the linear case, the proof is built on a long induction process that mixes up local and global, geometric and spectral data. As a by-product, we also stabilize the local trace formula for metaplectic groups over any local field of characteristic zero.
We prove an analogue of the celebrated Hall-Higman theorem, which gives a lower bound for the degree of the minimal polynomial of any semisimple element of prime power order $p^{a}$ of a finite classical group in any nontrivial irreducible cross characteristic representation. With a few explicit exceptions, this degree is at least $p^{a-1}(p-1)$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا