Do you want to publish a course? Click here

Quantitative Theory of Triplet Pairing in the Unconventional Superconductor LaNiGa$_2$

75   0   0.0 ( 0 )
 Added by Sudeep Ghosh
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The exceptionally low-symmetry crystal structures of the time-reversal symmetry breaking superconductors LaNiC$_2$ and LaNiGa$_2$ lead to an internally-antisymmetric non-unitary triplet (INT) state as the only possibility compatible with experiments. We argue that this state has a distinct signature: a double-peak structure in the Density of States (DOS) which resolves in the spin channel in a particular way. We construct a detailed model of LaNiGa$_2$ capturing its electronic band structure and magnetic properties ab initio. The pairing mechanism is described via a single adjustable parameter. The latter is fixed by the critical temperature $T_c$ allowing parameter-free predictions. We compute the electronic specific heat and find excellent agreement with experiment. The size of the ordered moment in the superconducting state is compatible with zero-field muon spin relaxation experiments and the predicted spin-resolved DOS suggests the spin-splitting is within the reach of present experimental technology.



rate research

Read More

The nature of the pairing states of superconducting LaNiC$_2$ and LaNiGa$_2$ has to date remained a puzzling question. Broken time reversal symmetry has been observed in both compounds and a group theoretical analysis implies a non-unitary triplet pairing state. However all the allowed non-unitary triplet states have nodal gap functions but most thermodynamic and NMR measurements indicate fully gapped superconductivity in LaNiC$_2$. Here we probe the gap symmetry of LaNiGa$_2$ by measuring the London penetration depth, specific heat and upper critical field. These measurements demonstrate two-gap nodeless superconductivity in LaNiGa$_2$, suggesting that this is a common feature of both compounds. These results allow us to propose a novel triplet superconducting state, where the pairing occurs between electrons of the same spin, but on different orbitals. In this case the superconducting wavefunction has a triplet spin component but isotropic even parity gap symmetry, yet the overall wavefunction remains antisymmetric under particle exchange. This model leads to a nodeless two-gap superconducting state which breaks time reversal symmetry, and therefore accounts well for the seemingly contradictory experimental results.
In this letter, we have examined the superconducting ground state of the HfV$_2$Ga$_4$ compound using resistivity, magnetization, zero-field (ZF) and transverse-field (TF) muon-spin relaxation and rotation ($mu$SR) measurements. Resistivity and magnetization unveil the onset of bulk superconductivity with $T_{bf c}sim$ 3.9~K, while TF-$mu$SR measurements show that the temperature dependence of the superfluid density is well described by a nodal two-gap $s$+$d$-wave order parameter model. In addition, ZF muon relaxation rate increases with decreasing temperature below 4.6 K, indicating the presence of weak spin fluctuations. These observations suggest an unconventional multiband nature of the superconductivity possibly arising from the distinct $d$-bands of V and Hf ions with spin fluctuations playing an important role. To better understand these findings, we carry out first-principles electronic-structure calculations, further highlighting that the Fermi surface consists of multiple disconnected sheets with very different orbital weights and spin-orbit coupling, bridging the way for a nodal multiband superconductivity scenario. In this vein, therefore, HfV$_2$Ga$_4$-family stands out as an open avenue to novel unexplored unconventional superconducting compounds, such as ScV$_2$Ga$_4$ and ZrV$_2$Ga$_4$, and other many rare earths based materials.
102 - V. Hutanu , H. Deng , S. Ran 2019
The crystal structure of the new superconductor UTe2 has been investigated for the first time at low temperature (LT) of 2.7 K, just closely above the superconducting transition temperature of about 1.7 K by single crystal neutron diffraction, in order to prove, whether the orthorhombic structure of type Immm (Nr. 71 Int. Tabl.) reported for room temperature (RT) persists down to the superconducting phase and can be considered as a parent symmetry for the development of spin triplet superconductivity. Our results show that the RT structure reported previously obtained by single crystal X-Ray diffraction indeed describes also the LT neutron diffraction data with high precision. No structural change from RT down to 2.7 K is observed. Detailed structural parameters for UTe2 at LT are reported.
We study the relation between the spin fluctuation and superconductivity in an heavily hole doped end material KFe$_2$As$_2$. We construct a five orbital model by approximately unfolding the Brillouin zone of the three dimensional ten orbital model obtained from first principles calculation. By applying the random phase approximation, we obtain the spin susceptibility and solve the linearized Eliashberg equation. The incommensurate spin fluctuation observed experimentally is understood as originating from interband interactions, where the multiorbital nature of the band structure results in an electron-hole asymmetry of the incommensurability in the whole iron-based superconductor family. As for superconductivity, s-wave and d-wave pairings are found to be in close competition, where the sign change in the gap function in the former is driven by the incommensurate spin fluctuations. We raise several possible explanations for the nodes in the superconducting gap of KFe$_2$As$_2$ observed experimentally.
206 - X. Cai , Y. A. Ying , N. E. Staley 2012
Odd-parity, spin-triplet superconductor Sr2RuO4 has been found to feature exotic vortex physics including half-flux quanta trapped in a doubly connected sample and the formation of vortex lattices at low fields. The consequences of these vortex states on the low-temperature magnetoresistive behavior of mesoscopic samples of Sr2RuO4 were investigated in this work using ring device fabricated on mechanically exfoliated single crystals of Sr2RuO4 by photolithography and focused ion beam. With the magnetic field applied perpendicular to the in-plane direction, thin-wall rings of Sr2RuO4 were found to exhibit pronounced quantum oscillations with a conventional period of the full-flux quantum even though the unexpectedly large amplitude and the number of oscillations suggest the observation of vortex-flow-dominated magnetoresistance oscillations rather than a conventional Little-Parks effect. For rings with a thick wall, two distinct periods of quantum oscillations were found in high and low field regimes, respectively, which we argue to be associated with the lock-in of a vortex lattice in these thick-wall rings. No evidence for half-flux-quantum resistance oscillations were identified in any sample measured so far without the presence of an in-plane field.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا