Do you want to publish a course? Click here

A multiscale discrete velocity method for model kinetic equations

165   0   0.0 ( 0 )
 Added by Ruifeng Yuan
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In this paper, authors focus effort on improving the conventional discrete velocity method (DVM) into a multiscale scheme in finite volume framework for gas flow in all flow regimes. Unlike the typical multiscale kinetic methods unified gas-kinetic scheme (UGKS) and discrete unified gas-kinetic scheme (DUGKS), which concentrate on the evolution of the distribution function at the cell interface, in the present scheme the flux for macroscopic variables is split into the equilibrium part and the nonequilibrium part, and the nonequilibrium flux is calculated by integrating the discrete distribution function at the cell center, which overcomes the excess numerical dissipation of the conventional DVM in the continuum flow regime. Afterwards, the macroscopic variables are finally updated by simply integrating the discrete distribution function at the cell center, or by a blend of the increments based on the macroscopic and the microscopic systems, and the multiscale property is achieved. Several test cases, involving unsteady, steady, high speed, low speed gas flows in all flow regimes, have been performed, demonstrating the good performance of the multiscale DVM from free molecule to continuum Navier-Stokes solutions and the multiscale property of the scheme is proved.



rate research

Read More

A novel hybrid computational method based on the discrete-velocity (DV) approximation, including the lattice-Boltzmann (LB) technique, is proposed. Numerical schemes for the kinetic equations are used in regions of rarefied flows, and LB schemes are employed in continuum flow zones. The schemes are written under the finite-volume (FV) formulation to achieve the flexibility of local mesh refinement. The truncated Hermite polynomial expansion is used for matching of DV and LB solutions. Special attention is paid to preserving conservation properties in the coupling algorithm. The test results obtained for the Couette flow of a rarefied gas are in excellent agreement with the benchmark solutions, mostly thanks to mesh refinement (both in the physical and velocity spaces) in the Knudsen layer.
In this paper, a high order quasi-conservative discontinuous Galerkin (DG) method using the non-oscillatory kinetic flux is proposed for the 5-equation model of compressible multi-component flows with Mie-Gruneisen equation of state. The method mainly consists of three steps: firstly, the DG method with the non-oscillatory kinetic flux is used to solve the conservative equations of the model; secondly, inspired by Abgralls idea, we derive a DG scheme for the volume fraction equation which can avoid the unphysical oscillations near the material interfaces; finally, a multi-resolution WENO limiter and a maximum-principle-satisfying limiter are employed to ensure oscillation-free near the discontinuities, and preserve the physical bounds for the volume fraction, respectively. Numerical tests show that the method can achieve high order for smooth solutions and keep non-oscillatory at discontinuities. Moreover, the velocity and pressure are oscillation-free at the interface and the volume fraction can stay in the interval [0,1].
189 - Ammar Hakim , James Juno 2020
Understanding fundamental kinetic processes is important for many problems, from plasma physics to gas dynamics. A first-principles approach to these problems requires a statistical description via the Boltzmann equation, coupled to appropriate field equations. In this paper we present a novel version of the discontinuous Galerkin (DG) algorithm to solve such kinetic equations. Unlike Monte-Carlo methods we use a continuum scheme in which we directly discretize the 6D phase-space using discontinuous basis functions. Our DG scheme eliminates counting noise and aliasing errors that would otherwise contaminate the delicate field-particle interactions. We use modal basis functions with reduced degrees of freedom to improve efficiency while retaining a high formal order of convergence. Our implementation incorporates a number of software innovations: use of JIT compiled top-level language, automatically generated computational kernels and a sophisticated shared-memory MPI implementation to handle velocity space parallelization.
We introduce the concept of a Graph-Informed Neural Network (GINN), a hybrid approach combining deep learning with probabilistic graphical models (PGMs) that acts as a surrogate for physics-based representations of multiscale and multiphysics systems. GINNs address the twin challenges of removing intrinsic computational bottlenecks in physics-based models and generating large data sets for estimating probability distributions of quantities of interest (QoIs) with a high degree of confidence. Both the selection of the complex physics learned by the NN and its supervised learning/prediction are informed by the PGM, which includes the formulation of structured priors for tunable control variables (CVs) to account for their mutual correlations and ensure physically sound CV and QoI distributions. GINNs accelerate the prediction of QoIs essential for simulation-based decision-making where generating sufficient sample data using physics-based models alone is often prohibitively expensive. Using a real-world application grounded in supercapacitor-based energy storage, we describe the construction of GINNs from a Bayesian network-embedded homogenized model for supercapacitor dynamics, and demonstrate their ability to produce kernel density estimates of relevant non-Gaussian, skewed QoIs with tight confidence intervals.
In this paper, we develop a simplified hybrid weighted essentially non-oscillatory (WENO) method combined with the modified ghost fluid method (MGFM) [28] to simulate the compressible two-medium flow problems. The MGFM can turn the two-medium flow problems into two single-medium cases by defining the ghost fluids status in terms of the predicted the interface status, which makes the material interface invisible. For the single medium flow case, we adapt between the linear upwind scheme and the WENO scheme automatically by identifying the regions of the extreme points for the reconstruction polynomial as same as the hybrid WENO scheme [50]. Instead of calculating their exact locations, we only need to know the regions of the extreme points based on the zero point existence theorem, which is simpler for implementation and saves computation time. Meanwhile, it still keeps the robustness and has high efficiency. Extensive numerical results for both one and two dimensional two-medium flow problems are performed to demonstrate the good performances of the proposed method.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا