Do you want to publish a course? Click here

Angular Learning: Toward Discriminative Embedded Features

93   0   0.0 ( 0 )
 Added by Jiantao Wu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The margin-based softmax loss functions greatly enhance intra-class compactness and perform well on the tasks of face recognition and object classification. Outperformance, however, depends on the careful hyperparameter selection. Moreover, the hard angle restriction also increases the risk of overfitting. In this paper, angular loss suggested by maximizing the angular gradient to promote intra-class compactness avoids overfitting. Besides, our method has only one adjustable constant for intra-class compactness control. We define three metrics to measure inter-class separability and intra-class compactness. In experiments, we test our method, as well as other methods, on many well-known datasets. Experimental results reveal that our method has the superiority of accuracy improvement, discriminative information, and time-consumption.



rate research

Read More

Deep Convolutional Neural Networks (CNN) enforces supervised information only at the output layer, and hidden layers are trained by back propagating the prediction error from the output layer without explicit supervision. We propose a supervised feature learning approach, Label Consistent Neural Network, which enforces direct supervision in late hidden layers. We associate each neuron in a hidden layer with a particular class label and encourage it to be activated for input signals from the same class. More specifically, we introduce a label consistency regularization called discriminative representation error loss for late hidden layers and combine it with classification error loss to build our overall objective function. This label consistency constraint alleviates the common problem of gradient vanishing and tends to faster convergence; it also makes the features derived from late hidden layers discriminative enough for classification even using a simple $k$-NN classifier, since input signals from the same class will have very similar representations. Experimental results demonstrate that our approach achieves state-of-the-art performances on several public benchmarks for action and object category recognition.
In this work, we revisit the global average pooling layer proposed in [13], and shed light on how it explicitly enables the convolutional neural network to have remarkable localization ability despite being trained on image-level labels. While this technique was previously proposed as a means for regularizing training, we find that it actually builds a generic localizable deep representation that can be applied to a variety of tasks. Despite the apparent simplicity of global average pooling, we are able to achieve 37.1% top-5 error for object localization on ILSVRC 2014, which is remarkably close to the 34.2% top-5 error achieved by a fully supervised CNN approach. We demonstrate that our network is able to localize the discriminative image regions on a variety of tasks despite not being trained for them
With the remarkable success achieved by the Convolutional Neural Networks (CNNs) in object recognition recently, deep learning is being widely used in the computer vision community. Deep Metric Learning (DML), integrating deep learning with conventional metric learning, has set new records in many fields, especially in classification task. In this paper, we propose a replicable DML method, called Include and Exclude (IE) loss, to force the distance between a sample and its designated class center away from the mean distance of this sample to other class centers with a large margin in the exponential feature projection space. With the supervision of IE loss, we can train CNNs to enhance the intra-class compactness and inter-class separability, leading to great improvements on several public datasets ranging from object recognition to face verification. We conduct a comparative study of our algorithm with several typical DML methods on three kinds of networks with different capacity. Extensive experiments on three object recognition datasets and two face recognition datasets demonstrate that IE loss is always superior to other mainstream DML methods and approach the state-of-the-art results.
With the development of deep learning, Deep Metric Learning (DML) has achieved great improvements in face recognition. Specifically, the widely used softmax loss in the training process often bring large intra-class variations, and feature normalization is only exploited in the testing process to compute the pair similarities. To bridge the gap, we impose the intra-class cosine similarity between the features and weight vectors in softmax loss larger than a margin in the training step, and extend it from four aspects. First, we explore the effect of a hard sample mining strategy. To alleviate the human labor of adjusting the margin hyper-parameter, a self-adaptive margin updating strategy is proposed. Then, a normalized version is given to take full advantage of the cosine similarity constraint. Furthermore, we enhance the former constraint to force the intra-class cosine similarity larger than the mean inter-class cosine similarity with a margin in the exponential feature projection space. Extensive experiments on Labeled Face in the Wild (LFW), Youtube Faces (YTF) and IARPA Janus Benchmark A (IJB-A) datasets demonstrate that the proposed methods outperform the mainstream DML methods and approach the state-of-the-art performance.
Deep clustering (DC) and utterance-level permutation invariant training (uPIT) have been demonstrated promising for speaker-independent speech separation. DC is usually formulated as two-step processes: embedding learning and embedding clustering, which results in complex separation pipelines and a huge obstacle in directly optimizing the actual separation objectives. As for uPIT, it only minimizes the chosen permutation with the lowest mean square error, doesnt discriminate it with other permutations. In this paper, we propose a discriminative learning method for speaker-independent speech separation using deep embedding features. Firstly, a DC network is trained to extract deep embedding features, which contain each sources information and have an advantage in discriminating each target speakers. Then these features are used as the input for uPIT to directly separate the different sources. Finally, uPIT and DC are jointly trained, which directly optimizes the actual separation objectives. Moreover, in order to maximize the distance of each permutation, the discriminative learning is applied to fine tuning the whole model. Our experiments are conducted on WSJ0-2mix dataset. Experimental results show that the proposed models achieve better performances than DC and uPIT for speaker-independent speech separation.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا