Do you want to publish a course? Click here

Hot subdwarf B stars with neutron star components II: Binary population synthesis

72   0   0.0 ( 0 )
 Added by You Wu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context: Subdwarf B stars (sdBs) play a crucial role in stellar evolution, asteroseismology, and far-UV radiation of early-type galaxies, and have been intensively studied with observation and theory. It has theoretically been predicted that sdBs with neutron star (NS) companions exist in the Galaxy, but none have been discovered yet. This remains a puzzle in this field. In a previous study (hereafter Paper I), we have studied the formation channels of sdB+NS binaries from main-sequence (MS) stars plus NS binaries by establishing a model grid, but it is still unclear how these binaries consisting of MS stars and NS binaries came to be in the first place. Aims: We systematically study the formation of sdB+NS binaries from their original zero-age main-sequence progenitors. We bridge the gap left by our previous study in this way. We obtain the statistical population properties of sdB+NS binaries and provide some guidance for observational efforts. Methods: We first used Hurleys rapid binary evolution code BSE to evolve 10^7 primordial binaries to the point where the companions of NS+MS, NS+Hertzsprung gap (HG) star, and NS+Giant Branch (GB) star binaries have just filled their Roche lobes. Next, we injected these binaries into the model grid we developed in Paper I to obtain the properties of the sdB+NS populations. We adopted two prescriptions of NS natal kicks. Different values of common-envelope ejection efficiency were chosen to examine the effect of common-envelope evolution on the results. Conclusions: Most sdB+NS binaries are located in the Galactic disk with small RV semi-amplitudes. SdB+NS binaries with large RV semi-amplitudes are expected to be strong GWR sources, some of which could be detected by LISA in the future.



rate research

Read More

Many aspects of the evolution of stars, and in particular the evolution of binary stars, remain beyond our ability to model them in detail. Instead, we rely on observations to guide our often phenomenological models and pin down uncertain model parameters. To do this statistically requires population synthesis. Populations of stars modelled on computers are compared to populations of stars observed with our best telescopes. The closest match between observations and models provides insight into unknown model parameters and hence the underlying astrophysics. In this brief review, we describe the impact that modern big-data surveys will have on population synthesis, the large parameter space problem that is rife for the application of modern data science algorithms, and some examples of how population synthesis is relevant to modern astrophysics.
We present a comparison of the frequencies of carbon-enhanced metal-poor (CEMP) giant and main-sequence turnoff stars, selected from the Sloan Digital Sky Survey and the Sloan Extension for Galactic Understanding and Exploration, with predictions from asymptotic giant-branch (AGB) mass-transfer models. We consider two initial mass functions (IMFs)-a Salpeter IMF, and a mass function with a characteristic mass of 10 solar mass. These comparisons indicate good agreement between the observed CEMP frequencies for stars with [Fe/H] > -1.5 and a Salpeter IMF, but not with an IMF having a higher characteristic mass. Thus, while the adopted AGB model works well for low-mass progenitor stars, it does not do so for high-mass progenitors. Our results imply that the IMF shifted from high- to low-mass dominated in the early history of the Milky Way, which appears to have occurred at a chemical time between [Fe/H] = -2.5 and [Fe/H] = -1.5. The corrected CEMP frequency for the turnoff stars with [Fe/H] < -3.0 is much higher than the AGB model prediction from the high-mass IMF, supporting the previous assertion that one or more additional mechanisms, not associated with AGB stars, are required for the production of carbon-rich material below [Fe/H] = -3.0. [abridged]
We present photometric and spectroscopic analyses of gravity (g-mode) long-period pulsating hot subdwarf B (sdB) stars. We perform a detailed asteroseismic and spectroscopic analysis of five pulsating sdB stars observed with {it TESS} aiming at the global comparison of the observations with the model predictions based on our stellar evolution computations coupled with the adiabatic pulsation computations. We apply standard seismic tools for mode identification, including asymptotic period spacings and rotational frequency multiplets. We calculate the mean period spacing for $l = 1$ and $l = 2$ modes and estimate the errors by means of a statistical resampling analysis. For all stars, atmospheric parameters were derived by fitting synthetic spectra to the newly obtained low-resolution spectra. We have computed stellar evolution models using {tt LPCODE} stellar evolution code, and computed $l = 1$ g-mode frequencies with the adiabatic non-radial pulsation code {tt LP-PUL}. Derived observational mean period spacings are then compared to the mean period spacings from detailed stellar evolution computations coupled with the adiabatic pulsation computations of g-modes. The atmospheric parameters derived from spectroscopic data are typical of long-period pulsating sdB stars with the effective temperature ranging from 23,700,K to 27,600,K and surface gravity spanning from 5.3,dex to 5.5,dex. In agreement with the expectations from theoretical arguments and previous asteroseismological works, we find that the mean period spacings obtained for models with small convective cores, as predicted by a pure Schwarzschild criterion, are incompatible with the observations. We find that models with a standard/modest convective boundary mixing at the boundary of the convective core are in better agreement with the observed mean period spacings and are therefore more realistic.
The carbon-enhanced metal-poor (CEMP) stars constitute approximately one fifth of the metal-poor ([Fe/H] ~< -2) population but their origin is not well understood. The most widely accepted formation scenario, invokes mass-transfer of carbon-rich material from a thermally-pulsing asymptotic giant branch (TPAGB) primary star to a less massive main-sequence companion which is seen today. Recent studies explore the possibility that an initial mass function biased toward intermediate-mass stars is required to reproduce the observed CEMP fraction in stars with metallicity [Fe/H] < -2.5. These models also implicitly predict a large number of nitrogen-enhanced metal-poor (NEMP) stars which is not seen. We investigate whether the observed CEMP and NEMP to extremely metal-poor (EMP) ratios can be explained without invoking a change in the initial mass function. We confirm earlier findings that with current detailed TPAGB models the large observed CEMP fraction cannot be accounted for. We find that efficient third dredge up in low-mass (less than 1.25Msun), low-metallicity stars may offer at least a partial explanation to the large observed CEMP fraction while remaining consistent with the small observed NEMP fraction.
114 - Sandro Mereghetti 2011
Stellar evolutionary models predict that most of the early type subdwarf stars in close binary systems have white dwarf companions. More massive companions, such as neutron stars or black holes, are also expected in some cases. The presence of compact stars in these systems can be revealed by the detection of X-rays powered by accretion of the subdwarfs stellar wind or by surface thermal emission. Using the Swift satellite, we carried out a systematic search for X-ray emission from a sample of twelve subdwarf B stars which, based on optical studies, have been suggested to have degenerate companions. None of our targets was detected, but the derived upper limits provide one of the few observational constraints on the stellar winds of early type subdwarfs. If the presence of neutron star companions is confirmed, our results constrain the mass loss rates of some of these subdwarf B stars to values <10^{-13}-10^{-12} Msun/yr.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا