Do you want to publish a course? Click here

Direct observation of the quantum-fluctuation driven amplitude mode in a microcavity polariton condensate

263   0   0.0 ( 0 )
 Added by Mark Steger
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Higgs amplitude mode is a collective excitation studied and observed in a broad class of matter, including superconductors, charge density waves, antiferromagnets, 3He p-wave superfluid, and ultracold atomic condensates. In all the observations reported thus far, the amplitude mode was excited by perturbing the condensate out of equilibrium. Studying an exciton-polariton condensate, here we report the first observation of this mode purely driven by intrinsic quantum fluctuations without such perturbations. By using an ultrahigh quality microcavity and a Raman spectrometer to maximally reject photoluminescence from the condensate, we observe weak but distinct photoluminescence at energies below the condensate emission. We identify this as the so-called ghost branches of the amplitude mode arising from quantum depletion of the condensate into this mode. These energies, as well as the overall structure of the photoluminescence spectra, are in good agreement with our theoretical analysis.



rate research

Read More

The Kibble-Zurek mechanism provides a unified theory to describe the universal scaling laws in the dynamics when a system is driven through a second-order quantum phase transition. However, for first-order quantum phase transitions, the Kibble-Zurek mechanism is usually not applicable. Here, we experimentally demonstrate and theoretically analyze a power-law scaling in the dynamics of a spin-1 condensate across a first-order quantum phase transition when a system is slowly driven from a polar phase to an antiferromagnetic phase. We show that this power-law scaling can be described by a generalized Kibble-Zurek mechanism. Furthermore, by experimentally measuring the spin population, we show the power-law scaling of the temporal onset of spin excitations with respect to the quench rate, which agrees well with our numerical simulation results. Our results open the door for further exploring the generalized Kibble-Zurek mechanism to understand the dynamics across first-order quantum phase transitions.
The property of superfluidity, first discovered in liquid 4He, is closely related to Bose-Einstein condensation (BEC) of interacting bosons. However, even at zero temperature, when one would expect the whole bosonic quantum liquid to become condensed, a fraction of it is excited into higher momentum states via interparticle interactions and quantum fluctuations -- the phenomenon of quantum depletion. Quantum depletion of weakly interacting atomic BECs in thermal equilibrium is well understood theoretically but is difficult to measure. This is even more challenging in driven-dissipative systems such as exciton-polariton condensates(photons coupled to electron-hole pairs in a semiconductor), since their nonequilibrium nature is predicted to suppress quantum depletion. Here, we observe quantum depletion of an optically trapped high-density exciton-polariton condensate by directly detecting the spectral branch of elementary excitations populated by this process. Analysis of the population of this branch in momentum space shows that quantum depletion of an exciton-polariton condensate can closely follow or strongly deviate from the equilibrium Bogoliubov theory, depending on the fraction of matter (exciton) in an exciton-polariton. Our results reveal the effects of exciton-polariton interactions beyond the mean-field description and call for a deeper understanding of the relationship between equilibrium and nonequilibrium BECs.
179 - M. Sich 2011
Microcavity polaritons are composite half-light half-matter quasi-particles, which have recently been demonstrated to exhibit rich physical properties, such as non-equilibrium Bose-Einstein condensation, parametric scattering and superfluidity. At the same time, polaritons have some important advantages over photons for information processing applications, since their excitonic component leads to weaker diffraction and stronger inter-particle interactions, implying, respectively, tighter localization and lower powers for nonlinear functionality. Here we present the first experimental observations of bright polariton solitons in a strongly coupled semiconductor microcavity. The polariton solitons are shown to be non-diffracting high density wavepackets, that are strongly localised in real space with a corresponding broad spectrum in momentum space. Unlike solitons known in other matter-wave systems such as Bose condensed ultracold atomic gases, they are non-equilibrium and rely on a balance between losses and external pumping. Microcavity polariton solitons are excited on picosecond timescales, and thus have significant benefits for ultrafast switching and transfer of information over their light only counterparts, semiconductor cavity lasers (VCSELs), which have only nanosecond response time.
Singly quantized vortices have been already observed in many systems including the superfluid helium, Bose Einstein condensates of dilute atomic gases, and condensates of exciton polaritons in the solid state. Two dimensional superfluids carrying spin are expected to demonstrate a different type of elementary excitations referred to as half quantum vortices characterized by a pi rotation of the phase and a pi rotation of the polarization vector when circumventing the vortex core. We detect half quantum vortices in an exciton-polariton condensate by means of polarization resolved interferometry, real space spectroscopy and phase imaging. Half quantum vortices coexist with single quantum vortices in our sample.
190 - L. Einkemmer , Z. Voros , G. Weihs 2013
Entanglement generation in microcavity exciton-polaritons is an interesting application of the peculiar properties of these half-light/half-matter quasiparticles. In this paper we theoretically investigate their luminescence dynamics and entanglement formation in single, double, and triple cavities. We derive general expressions and selection rules for polariton-polariton scattering. We evaluate a number of possible parametric scattering schemes in terms of entanglement, and identify the ones that are experimentally most promising.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا