No Arabic abstract
We suggest secure Vehicle-to-Vehicle communications in a secure cluster. Here, the security cluster refers to a group of vehicles having a certain level or more of secrecy capacity. Usually, there are many difficulties in defining secrecy capacity, but we define vehicular secrecy capacity for the vehicle defined only by SNR values. Defined vehicular secrecy capacity is practical and efficient in achieving physical layer security in V2V. Typically, secrecy capacity may be changed by antenna related parameters, path related parameters, and noise related parameters. In addition to these conventional parameters, we address unique vehicle-related parameters, such as vehicle speed, safety distance, speed limit, response time, etc. in connection with autonomous driving. We confirm the relationship between vehicle-related secrecy parameters and secrecy capacity through modeling in highway and urban traffic situations. These vehicular secrecy parameters enable real-time control of vehicle secrecy capacity of V2V communications. We can use vehicular secrecy capacity to achieve secure vehicle communications from attackers such as quantum computers. Our research enables economic, effective and efficient physical layer security in autonomous driving.
We introduce a hash chain-based secure cluster. Here, secure cluster refers to a set of vehicles having vehicular secrecy capacity of more than a reference value. Since vehicle communication is performed in such a secure cluster, basically secure vehicle communication can be expected. Secure hash clusters can also be expected by sharing hash chains derived from vehicle identification numbers. We are also convinced that our paper is essential for future autonomous vehicles by providing secure clustering services using MEC. In the near term, autonomous driving, our paper makes it possible to expect strong and practically safe vehicle communications.
The innovations of vehicle connectivity have been increasing dramatically to enhance the safety and user experience of driving, while the rising numbers of interfaces to the external world also bring security threats to vehicles. Many security countermeasures have been proposed and discussed to protect the systems and services against attacks. To provide an overview of the current states in this research field, we conducted a systematic mapping study on the topic area security countermeasures of in-vehicle communication systems. 279 papers are identified based on the defined study identification strategy and criteria. We discussed four research questions related to the security countermeasures, validation methods, publication patterns, and research trends and gaps based on the extracted and classified data. Finally, we evaluated the validity threats, the study identification results, and the whole mapping process. We found that the studies in this topic area are increasing rapidly in recent years. However, there are still gaps in various subtopics like automotive Ethernet security, anomaly reaction, and so on. This study reviews the target field not only related to research findings but also research activities, which can help identify research gaps at a high level and inspire new ideas for future work.
In this work, we propose a new physical layer security framework for optical space networks. More precisely, we consider two practical eavesdropping scenarios: free-space optical (FSO) eavesdropping in the space and FSO eavesdropping in the air. In the former, we assume that a high altitude platform station (HAPS) is trying to capture the confidential information from the low earth orbit (LEO) satellite, whereas in the latter, an unmanned aerial vehicle (UAV) eavesdropper is trying to intercept the confidential information from the HAPS node. To quantify the overall performance of both scenarios, we obtain closed-form secrecy outage probability (SOP) and probability of positive secrecy capacity (PPSC) expressions and validate with Monte Carlo simulations. Furthermore, we provide important design guidelines that can be helpful in the design of secure non-terrestrial networks.
Intelligent reflective surface (IRS) technology is emerging as a promising performance enhancement technique for next-generation wireless networks. Hence, we investigate the physical layer security of the downlink in IRS-aided non-orthogonal multiple access networks in the presence of an eavesdropper, where an IRS is deployed for enhancing the quality by assisting the cell-edge user to communicate with the base station. To characterize the networks performance, the expected value of the new channel statistics is derived for the reflected links in the case of Nakagami-m fading. Furthermore, the performance of the proposed network is evaluated both in terms of the secrecy outage probability (SOP) and the average secrecy capacity (ASC). The closed-form expressions of the SOP and the ASC are derived. We also study the impact of various network parameters on the overall performance of the network considered. To obtain further insights, the secrecy diversity orders and the high signal-to-noise ratio slopes are obtained. We finally show that: 1) the expectation of the channel gain in the reflected links is determined both by the number of IRSs and by the Nakagami-m fading parameters; 2) The SOP of both receiver 1 and receiver 2 becomes unity, when the number of IRSs is sufficiently high; 3) The secrecy diversity orders are affected both by the number of IRSs and by the Nakagami-m fading parameters, whereas the high-SNR slopes are not affected by these parameters. Our Monte-Carlo simulations perfectly demonstrate the analytical results.
In this paper, we introduce an intelligent reflecting surface (IRS) to provide a programmable wireless environment for physical layer security. By adjusting the reflecting coefficients, the IRS can change the attenuation and scattering of the incident electromagnetic wave so that it can propagate in a desired way toward the intended receiver. Specifically, we consider a downlink multiple-input single-output (MISO) broadcast system where the base station (BS) transmits independent data streams to multiple legitimate receivers and keeps them secret from multiple eavesdroppers. By jointly optimizing the beamformers at the BS and reflecting coefficients at the IRS, we formulate a minimum-secrecy-rate maximization problem under various practical constraints on the reflecting coefficients. The constraints capture the scenarios of both continuous and discrete reflecting coefficients of the reflecting elements. Due to the non-convexity of the formulated problem, we propose an efficient algorithm based on the alternating optimization and the path-following algorithm to solve it in an iterative manner. Besides, we show that the proposed algorithm can converge to a local (global) optimum. Furthermore, we develop two suboptimal algorithms with some forms of closed-form solutions to reduce the computational complexity. Finally, the simulation results validate the advantages of the introduced IRS and the effectiveness of the proposed algorithms