Do you want to publish a course? Click here

Competition of trivial and topological phases in patterned graphene based heterostructures

326   0   0.0 ( 0 )
 Added by J\\'anos Koltai Dr.
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore the effect of mechanical strain on the electronic spectrum of patterned graphene based heterostructures. We focus on the competition of Kekule-O type distortion favoring a trivial phase and commensurate Kane-Mele type spin-orbit coupling generating a topological phase. We derive a simple low-energy Dirac Hamiltonian incorporating the two gap promoting mechanisms and include terms corresponding to uniaxial strain. The derived effective model explains previous ab initio results through a simple physical picture. We show that while the trivial gap is sensitive to mechanical distortions, the topological gap stays resilient.



rate research

Read More

Topological phases of matter that depend for their existence on interactions are fundamentally interesting and potentially useful as platforms for future quantum computers. Despite the multitude of theoretical proposals the only interaction-enabled topological phase experimentally observed is the fractional quantum Hall liquid. To help identify other systems that can give rise to such phases we present in this work a detailed study of the effect of interactions on Majorana zero modes bound to vortices in a superconducting surface of a 3D topological insulator. This system is of interest because, as was recently pointed out, it can be tuned into the regime of strong interactions. We start with a 0D system suggesting an experimental realization of the interaction-induced $mathbb{Z}_8$ ground state periodicity previously discussed by Fidkowski and Kitaev. We argue that the periodicity is experimentally observable using a tunnel probe. We then focus on interaction-enabled crystalline topological phases that can be built with the Majoranas in a vortex lattice in higher dimensions. In 1D we identify an interesting exactly solvable model which is related to a previously discussed one that exhibits an interaction-enabled topological phase. We study these models using analytical techniques, exact numerical diagonalization (ED) and density matrix renormalization group (DMRG). Our results confirm the existence of the interaction-enabled topological phase and clarify the nature of the quantum phase transition that leads to it. We finish with a discussion of models in dimensions 2 and 3 that produce similar interaction-enabled topological phases.
While the application of out-of-plane magnetic fields was, so far, believed to be detrimental for the formation of Majorana phases in artificially engineered hybrid superconducting-semiconducting junctions, several recent theoretical studies have found it indeed useful in establishing such topological phases 1-5. Majorana phases emerge as quantized plateaus in the magnetoconductance of the hybrid junctions based on two-dimensional electron gases (2DEG) under fully out-of-plane magnetic fields. The large transverse Rashba spin-orbit interaction in 2DEG, together with a strong magneto-orbital effect, yield topological phase transitions to nontrivial phases hosting Majorana modes. Such Majorana modes are formed at the ends of 2DEG-based wires with a hybrid superconductor-semiconductor integrity. Here, we report on the experimental observation of such topological phases in Josephson junctions, based on In0.75Ga0.25As 2DEG, by sweeping out-of-plane magnetic fields of as small as 0 < B(mT) < 100 and probing the conductance to highlight the characteristic quantized magnetoconductance plateaus. Our approaches towards (i) creation and detection of topological phases in small out-of-plane magnetic fields, and (ii) integration of an array of topological Josephson junctions on a single chip pave the ways for the development of scalable quantum integrated circuits for their potential applications in fault-tolerant quantum processing and computing.
We use electron transport to characterize monolayer graphene - multilayer MoS2 heterostructures. Our samples show ambipolar characteristics and conductivity saturation on the electron branch which signals the onset of MoS2 conduction band population. Surprisingly, the carrier density in graphene decreases with gate bias once MoS2 is populated, demonstrating negative compressibility in MoS2. We are able to interpret our measurements quantitatively by accounting for disorder and using the random phase approximation (RPA) for the exchange and correlation energies of both Dirac and parabolic-band two-dimensional electron gases. This interpretation allows us to extract the energetic offset between the conduction band edge of MoS2 and the Dirac point of graphene.
Resonant Rayleigh scattering of light from electrons confined in gallium arsenide double quantum wells displays significant changes at temperatures that are below one degree Kelvin. The Rayleigh resonance occurs for photon energies that overlap a quantum well exciton and when electron bilayers condense into a quantum-Hall state. Marked changes in Rayleigh scattering intensities that occur in response to application of an in-plane magnetic field indicate that the unexpected temperature dependence is linked to formation of non-uniform electron fluids in a disordered quantum-Hall phase. These results demonstrate a new realm of study in which resonant Rayleigh scattering methods probe quantum phases of cold electrons in semiconductor heterostructures.
We investigate theoretically the electronic structure of graphene and boron nitride (BN) lateral heterostructures, which were fabricated in recent experiments. The first-principles density functional calculation demonstrates that a huge intrinsic transverse electric field can be induced in the graphene nanoribbon region, and depends sensitively on the edge configuration of the lateral heterostructure. The polarized electric field originates from the charge mismatch at the BN-graphene interfaces. This huge electric field can open a significant bang gap in graphene nanoribbon, and lead to fully spinpolarized edge states and induce half-metallic phase in the lateral BN/Graphene/BN heterostructure with proper edge configurations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا