No Arabic abstract
We use co-tunneling spectroscopy to investigate spin-, orbital-, and spin-orbital Kondo transport in a strongly confined system of InAs double quantum dots (QDs) parallel-coupled to source and drain. In the one-electron transport regime, the higher symmetry spin-orbital Kondo effect manifests at orbital degeneracy and no external magnetic field. We then proceed to show that the individual Kondo contributions can be isolated and studied separately; either by orbital detuning in the case of spin-Kondo transport, or by spin splitting in the case of orbital Kondo transport. By varying the inter-dot tunnel coupling, we show that lifting of the spin degeneracy is key to confirming the presence of an orbital degeneracy, and to detecting a small orbital hybridization gap. Finally, in the two-electron regime, we show that the presence of a spin-triplet ground state results in spin-Kondo transport at zero magnetic field.
We study spin transport in the one- and two-electron regimes of parallel-coupled double quantum dots (DQDs). The DQDs are formed in InAs nanowires by a combination of crystal-phase engineering and electrostatic gating, with an interdot tunnel coupling ($t$) tunable by one order of magnitude. Large single-particle energy separations (up to 10 meV) and $|g^*|$ factors ($sim$10) enable detailed studies of the $B$-field-induced transition from a singlet-to-triplet ground state as a function of $t$. In particular, we investigate how the magnitude of the spin-orbit-induced singlet-triplet anticrossing depends on $t$. For cases of strong coupling, we find values of 230 $mu$eV for the anticrossing using excited-state spectroscopy. Experimental results are reproduced by calculations based on rate equations and a DQD model including a single orbital in each dot.
We report results on the control of barrier transparency in InAs/InP nanowire quantum dots via the electrostatic control of the device electron states. Recent works demonstrated that barrier transparency in this class of devices displays a general trend just depending on the total orbital energy of the trapped electrons. We show that a qualitatively different regime is observed at relatively low filling numbers, where tunneling rates are rather controlled by the axial configuration of the electron orbital. Transmission rates versus filling are further modified by acting on the radial configuration of the orbitals by means of electrostatic gating, and the barrier transparency for the various orbitals is found to evolve as expected from numerical simulations. The possibility to exploit this mechanism to achieve a controlled continuous tuning of the tunneling rate of an individual Coulomb blockade resonance is discussed.
We present transport measurements on a lateral double dot produced by combining local anodic oxidation and electron beam lithography. We investigate the tunability of our device and demonstrate, that we can switch between capacitive and tunnel coupling. In the regime of capacitive coupling we observe the phenomenon of spin blockade in a magnetic field and analyze the influence of capacitive interdot coupling on this effect.
We study the spin-resolved transport through single-level quantum dots strongly coupled to ferromagnetic leads in the Kondo regime, with a focus on contact and material asymmetry-related effects. By using the numerical renormalization group method, we analyze the dependence of relevant spectral functions, linear conductance and tunnel magnetoresistance on the system asymmetry parameters. In the parallel magnetic configuration of the device the Kondo effect is generally suppressed due to the presence of exchange field, irrespective of systems asymmetry. In the antiparallel configuration, on the other hand, the Kondo effect can develop if the system is symmetric. We show that even relatively weak asymmetry may lead to the suppression of the Kondo resonance in the antiparallel configuration and thus give rise to nontrivial behavior of the tunnel magnetoresistance. In addition, by using the second-order perturbation theory we derive general formulas for the exchange field in both magnetic configurations of the system.
Systems of photonic crystal cavities coupled to quantum dots are a promising architecture for quantum networking and quantum simulators. The ability to independently tune the frequencies of laterally separated quantum dots is a crucial component of such a scheme. Here, we demonstrate independent tuning of laterally separated quantum dots in photonic crystal cavities coupled by in-plane waveguides by implanting lines of protons which serve to electrically isolate different sections of a diode structure.