No Arabic abstract
The multipath radio channel is considered to have a non-bandlimited channel impulse response. Therefore, it is challenging to achieve high resolution time-delay (TD) estimation of multipath components (MPCs) from bandlimited observations of communication signals. It this paper, we consider the problem of multiband channel sampling and TD estimation of MPCs. We assume that the nonideal multibranch receiver is used for multiband sampling, where the noise is nonuniform across the receiver branches. The resulting data model of Hankel matrices formed from acquired samples has multiple shift-invariance structures, and we propose an algorithm for TD estimation using weighted subspace fitting. The subspace fitting is formulated as a separable nonlinear least squares (NLS) problem, and it is solved using a variable projection method. The proposed algorithm supports high resolution TD estimation from an arbitrary number of bands, and it allows for nonuniform noise across the bands. Numerical simulations show that the algorithm almost attains the Cramer Rao Lower Bound, and it outperforms previously proposed methods such as multiresolution TOA, MI-MUSIC, and ESPRIT.
Achieving high resolution time-of-arrival (TOA) estimation in multipath propagation scenarios from bandlimited observations of communication signals is challenging because the multipath channel impulse response (CIR) is not bandlimited. Modeling the CIR as a sparse sequence of Diracs, TOA estimation becomes a problem of parametric spectral inference from observed bandlimited signals. To increase resolution without arriving at unrealistic sampling rates, we consider multiband sampling approach, and propose a practical multibranch receiver for the acquisition. The resulting data model exhibits multiple shift invariance structures, and we propose a corresponding multiresolution TOA estimation algorithm based on the ESPRIT algorithm. The performance of the algorithm is compared against the derived Cramer Rao Lower Bound, using simulations with standardized ultra-wideband (UWB) channel models. We show that the proposed approach provides high-resolution estimates while reducing spectral occupancy and sampling costs compared to traditional UWB approaches.
In this paper, we focus on the problem of blind joint calibration of multiband transceivers and time-delay (TD) estimation of multipath channels. We show that this problem can be formulated as a particular case of covariance matching. Although this problem is severely ill-posed, prior information about radio-frequency chain distortions and multipath channel sparsity is used for regularization. This approach leads to a biconvex optimization problem, which is formulated as a rank-constrained linear system and solved by a simple group Lasso algorithm.Numerical experiments show that the proposed algorithm provides better calibration and higher resolution for TD estimation than current state-of-the-art methods.
A novel intercarrier interference (ICI)-aware orthogonal frequency division multiplexing (OFDM) channel estimation network ICINet is presented for rapidly time-varying channels. ICINet consists of two components: a preprocessing deep neural subnetwork (PreDNN) and a cascaded residual learning-based neural subnetwork (CasResNet). By fully taking into account the impact of ICI, the proposed PreDNN first refines the initial channel estimates in a subcarrier-wise fashion. In addition, the CasResNet is designed to further enhance the estimation accuracy. The proposed cascaded network is compatible with any pilot patterns and robust against mismatched system configurations. Simulation results verify the superiority of ICINet over existing networks in terms of better performance and much less complexity.
Reconstructing a band-limited function from its finite sample data is a fundamental task in signal analysis. A simple Gaussian or hyper-Gaussian regularized Shannon sampling series has been proved to be able to achieve exponential convergence for uniform sampling. In this paper, we prove that exponential approximation can also be attained for general nonuniform sampling. The analysis is based on the the residue theorem to represent the truncated error by a contour integral. Several concrete examples of nonuniform sampling with exponential convergence will be presented.
A reconfigurable intelligent surface (RIS) can shape the radio propagation by passively changing the directions of impinging electromagnetic waves. The optimal control of the RIS requires perfect channel state information (CSI) of all the links connecting the base station (BS) and the mobile station (MS) via the RIS. Thereby the channel (parameter) estimation at the BS/MS and the related message feedback mechanism are needed. In this paper, we adopt a two-stage channel estimation scheme for the RIS-aided millimeter wave (mmWave) MIMO channels using an iterative reweighted method to sequentially estimate the channel parameters. We evaluate the average spectrum efficiency (SE) and the RIS beamforming gain of the proposed scheme and demonstrate that it achieves high-resolution estimation with the average SE comparable to that with perfect CSI.