Do you want to publish a course? Click here

The role of galaxies and AGN in reionising the IGM -- III : IGM-galaxy cross-correlations at z~6 from 8 quasar fields with DEIMOS and MUSE

88   0   0.0 ( 0 )
 Added by Romain A. Meyer
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present improved results of the measurement of the correlation between galaxies and the intergalactic medium (IGM) transmission at the end of reionisation. We have gathered a sample of $13$ spectroscopically confirmed Lyman-break galaxies (LBGs) and $21$ Lyman-$alpha$ emitters (LAEs) at angular separations $20 lesssim theta lesssim 10$ ($sim 0.1-4$ pMpc at $zsim 6$) from the sightlines to $8$ background $zgtrsim 6$ quasars. We report for the first time the detection of an excess of Lyman-$alpha$ transmission spikes at $sim 10-60$ cMpc from LAEs ($3.2sigma$) and LBGs ($1.9sigma$). We interpret the data with an improved model of the galaxy-Lyman-$alpha$ transmission and two-point cross-correlations which includes the enhanced photoionisation due to clustered faint sources, enhanced gas densities around the central bright objects and spatial variations of the mean free path. The observed LAE(LBG)-Lyman-$alpha$ transmission spike two-point cross-correlation function (2PCCF) constrains the luminosity-averaged escape fraction of all galaxies contributing to reionisation to $langle f_{rm esc} rangle_{M_{rm UV}<-12} = 0.14_{-0.05}^{+0.28},(0.23_{-0.12}^{+0.46})$. We investigate if the 2PCCF measurement can determine whether bright or faint galaxies are the dominant contributors to reionisation. Our results show that a contribution from faint galaxies ($M_{rm UV} > -20 , (2sigma)$) is necessary to reproduce the observed 2PCCF and that reionisation might be driven by different sub-populations around LBGs and LAEs at $zsim 6$.



rate research

Read More

We introduce a new method for determining the influence of galaxies and active galactic nuclei (AGN) on the physical state of the intergalactic medium (IGM) at high redshift and illustrate its potential via a first application to the field of the $z=6.42$ QSO J1148+5251. By correlating the spatial positions of spectroscopically-confirmed Lyman break galaxies (LBGs) with fluctuations in the Lyman alpha forest seen in the high signal-to-noise spectrum of a background QSO, we provide a statistical measure of the typical escape fraction of Lyman continuum photons close to the end of cosmic reionisation. Here we use Keck DEIMOS spectroscopy to locate 7 colour-selected LBGs in the redshift range $5.3lesssim zlesssim 6.4$ and confirm a faint $z=5.701$ AGN. We then examine the spatial correlation between this sample and Ly$alpha$/Ly$beta$ transmission fluctuations in a Keck ESI spectrum of the QSO. Interpreting the statistical HI proximity effect as arising from faint galaxies clustered around the detected LBGs, we translate the observed mean Ly$alpha$ transmitted flux around an average detected LBG into a constraint on the mean escape fraction $langle f_{rm esc}ranglegeq0.08$ at $zsimeq6$. We also report evidence of the individual transverse HI proximity effect of a $z=6.177$ luminous LBG via a Ly$beta$ transmission spike and two broad Ly$alpha$ transmission spikes around the $z=5.701$ AGN. We discuss the possible origin of such associations which suggest that while faint galaxies are primarily driving reionisation, luminous galaxies and AGN may provide important contributions to the UV background or thermal fluctuations of the IGM at $zsimeq6$. Although a limited sample, our results demonstrate the potential of making progress using this method in resolving one of the most challenging aspects of the contribution of galaxies and AGN to cosmic reionisation.
Aim. Our aim is to analyse the variance of the Inter-Galactic Medium transmission (IGM) by studying this parameter in the rest-frame UV spectra of a large sample of high redshift galaxies. Method. We make use of the VIMOS Ultra Deep Survey and the VANDELS public survey to have an insight into the far UV spectrum of $2.7<z<6$ galaxies. Using the SPARTAN fitting software, we estimate the IGM towards individual galaxies and then divide them in two sub-samples characterized by a transmission above or below the theoretical prescription. We create average spectra of combined VUDS and VANDELS data for each set of galaxies in seven redshift bins. Results. The resulting spectra clearly exhibit the variance of the IGM transmission that can be seen directly from high redshift galaxy observations. Computing the optical depth based on the IGM transmission, we find an excellent agreement with QSOs results. In addition, our measurements seem to suggest that there is a large dispersion of redshift where complete Gunn-Peterson Trough happens, depending on the line of sight.
58 - Romain A. Meyer 2018
We present a new method to study the contribution of faint sources to the UV background using the 1D correlation of metal absorbers with the intergalactic medium (IGM) transmission in a Quasi Stellar Object (QSO) sightline. We take advantage of a sample of $25$ high signal-to-noise ratio QSO spectra to retrieve $150$ triply-ionised carbon (cfour) absorbers at $4.5lesssim zlesssim 6.2$, of which $37$ systems whose expected H{~small I} absorption lie in the Lyman-$alpha$ forest. We derive improved constraints on the cosmic density of cfour ,at $4.3< z < 6.2$ and infer from abundance-matching that cfour ,absorbers trace $M_{text{UV}}lesssim -16$ galaxies. Correlation with the Lyman-$alpha$ forest of the QSOs indicates that these objects are surrounded by a highly opaque region at $rlesssim 5 $ cMpc/h followed by an excess of transmission at $rgtrsim 10$ cMpc/h detected at $2.7sigma$. This is in contrast to equivalent measurements at lower redshifts where only the opaque trough is detected. We interpret this excess as a statistical enhancement of the local photoionisation rate due to clustered faint galaxies around the cfour ,absorbers. Using the analytical framework described in Paper I of this series, we derive a constraint on the average product of the escape fraction and the Lyman continuum photon production efficiency of the galaxy population clustered around the cfour ,absorbers, $log langle f_{text{esc}}xi_{text{ion}}rangle /[{rm erg^{-1}~Hz}] = 25.01^{+0.30}_{-0.19}$. This implies that faint galaxies beyond the reach of current facilities may have harder radiation fields and/or larger escape fractions than currently detected objects at the end of the reionisation epoch.
We investigate quasar outflows at $z geq 6$ by performing zoom-in cosmological hydrodynamical simulations. By employing the SPH code GADGET-3, we zoom in the $2 R_{200}$ region around a $2 times 10^{12} M_{odot}$ halo at $z = 6$, inside a $(500 ~ {rm Mpc})^3$ comoving volume. We compare the results of our AGN runs with a control simulation in which only stellar/SN feedback is considered. Seeding $10^5 M_{odot}$ BHs at the centers of $10^{9} M_{odot}$ halos, we find the following results. BHs accrete gas at the Eddington rate over $z = 9 - 6$. At $z = 6$, our most-massive BH has grown to $M_{rm BH} = 4 times 10^9 M_{odot}$. Fast ($v_{r} > 1000$ km/s), powerful ($dot{M}_{rm out} sim 2000 M_{odot}$/yr) outflows of shock-heated low-density gas form at $z sim 7$, and propagate up to hundreds kpc. Star-formation is quenched over $z = 8 - 6$, and the total SFR (SFR surface density near the galaxy center) is reduced by a factor of $5$ ($1000$). We analyse the relative contribution of multiple physical process: (i) disrupting cosmic filamentary cold gas inflows, (ii) reducing central gas density, (iii) ejecting gas outside the galaxy; and find that AGN feedback has the following effects at $z = 6$. The inflowing gas mass fraction is reduced by $sim 12 %$, the high-density gas fraction is lowered by $sim 13 %$, and $sim 20 %$ of the gas outflows at a speed larger than the escape velocity ($500$ km/s). We conclude that quasar-host galaxies at $z geq 6$ are accreting non-negligible amount of cosmic gas, nevertheless AGN feedback quenches their star formation dominantly by powerful outflows ejecting gas out of the host galaxy halo.
We present a galaxy survey of the field surrounding PKS0405-123 performed with the WFCCD spectrometer at Las Campanas Observatory. The survey is comprised of two datasets: (1) a greater than 95% complete survey to R = 20 of the field centered on PKS0405-123 with 10 radius (L~0.1 L_* and radius of 1Mpc at z=0.1); and (2) a set of four discontiguous (i.e. non-overlapping), flanking fields covering ~1 square degree area with completeness ~90% to R=19.5mag. With these datasets, one can examine the local and large-scale galactic environment of the absorption systems identified toward PKS0405-123. In this paper, we focus on the OVI systems analyzed in Paper I. The results suggest that this gas arises in a diverse set of galactic environments including the halos of individual galaxies, galaxy groups, filamentary-like structures, and also regions devoid of luminous galaxies. In this small sample, there are no obvious trends between galactic environment and the physical properties of the gas. Furthermore, we find similar results for a set of absorption systems with comparable N(HI) but no detectable metal-lines. The observations indicate that metals are distributed throughout a wide range of environments in the local universe. Future papers in this series will address the distribution of galactic environments associated with metal-line systems and the Lya forest based on data for over 10 additional fields. All of the data presented in this paper is made public at a dedicated web site.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا