Do you want to publish a course? Click here

Quasar outflows at $z geq 6$: the impact on the host galaxies

80   0   0.0 ( 0 )
 Added by Paramita Barai
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate quasar outflows at $z geq 6$ by performing zoom-in cosmological hydrodynamical simulations. By employing the SPH code GADGET-3, we zoom in the $2 R_{200}$ region around a $2 times 10^{12} M_{odot}$ halo at $z = 6$, inside a $(500 ~ {rm Mpc})^3$ comoving volume. We compare the results of our AGN runs with a control simulation in which only stellar/SN feedback is considered. Seeding $10^5 M_{odot}$ BHs at the centers of $10^{9} M_{odot}$ halos, we find the following results. BHs accrete gas at the Eddington rate over $z = 9 - 6$. At $z = 6$, our most-massive BH has grown to $M_{rm BH} = 4 times 10^9 M_{odot}$. Fast ($v_{r} > 1000$ km/s), powerful ($dot{M}_{rm out} sim 2000 M_{odot}$/yr) outflows of shock-heated low-density gas form at $z sim 7$, and propagate up to hundreds kpc. Star-formation is quenched over $z = 8 - 6$, and the total SFR (SFR surface density near the galaxy center) is reduced by a factor of $5$ ($1000$). We analyse the relative contribution of multiple physical process: (i) disrupting cosmic filamentary cold gas inflows, (ii) reducing central gas density, (iii) ejecting gas outside the galaxy; and find that AGN feedback has the following effects at $z = 6$. The inflowing gas mass fraction is reduced by $sim 12 %$, the high-density gas fraction is lowered by $sim 13 %$, and $sim 20 %$ of the gas outflows at a speed larger than the escape velocity ($500$ km/s). We conclude that quasar-host galaxies at $z geq 6$ are accreting non-negligible amount of cosmic gas, nevertheless AGN feedback quenches their star formation dominantly by powerful outflows ejecting gas out of the host galaxy halo.



rate research

Read More

We explore the kinematics of 27 z~6 quasar host galaxies observed in [CII]-158 micron ([CII]) emission with the Atacama Large Millimeter/sub-millimeter Array at a resolution of ~0.25. We find that nine of the galaxies show disturbed [CII] emission, either due to a close companion galaxy or recent merger. Ten galaxies have smooth velocity gradients consistent with the emission arising from a gaseous disk. The remaining eight quasar host galaxies show no velocity gradient, suggesting that the gas in these systems is dispersion-dominated. All galaxies show high velocity dispersions with a mean of 129+-10 km/s. To provide an estimate of the dynamical mass within twice the half-light radius of the quasar host galaxy, we model the kinematics of the [CII] emission line using our publicly available kinematic fitting code, qubefit. This results in a mean dynamical mass of 5.0+-0.8(+-3.5) x 10^10 Msun. Comparison between the dynamical mass and the mass of the supermassive black hole reveals that the sample falls above the locally derived bulge mass--black hole mass relation at 2.4sigma significance. This result is robust even if we account for the large systematic uncertainties. Using several different estimators for the molecular mass, we estimate a gas mass fraction of >10%, indicating gas makes up a large fraction of the baryonic mass of z~6 quasar host galaxies. Finally, we speculate that the large variety in [CII] kinematics is an indication that gas accretion onto z~6 super massive black holes is not caused by a single precipitating factor.
We study the interstellar medium in a sample of 27 high-redshift quasar host galaxies at z>6, using the [CII] 158um emission line and the underlying dust continuum observed at ~1kpc resolution with ALMA. By performing uv-plane spectral stacking of both the high and low spatial resolution data, we investigate the spatial and velocity extent of gas, and the size of the dust-emitting regions. We find that the average surface brightness profile of both the [CII] and the dust continuum emission can be described by a steep component within a radius of 2kpc, and a shallower component with a scale length of 2kpc, detected up to ~10kpc. The surface brightness of the extended emission drops below ~1% of the peak at radius of ~5kpc, beyond which it constitutes 10-20% of the total measured flux density. Although the central component of the dust continuum emission is more compact than that of the [CII] emission, the extended components have equivalent profiles. The observed extended components are consistent with those predicted by hydrodynamical simulations of galaxies with similar infrared luminosities, where the dust emission is powered by star formation. The [CII] spectrum measured in the mean uv-plane stacked data can be described by a single Gaussian, with no observable [CII] broad-line emission (velocities in excess of >500km/s), that would be indicative of outflows. Our findings suggest that we are probing the interstellar medium and associated star formation in the quasar host galaxies up to radii of 10kpc, whereas we find no evidence for halos or outflows.
The recent discovery of high redshift dusty galaxies implies a rapid dust enrichment of their interstellar medium (ISM). To interpret these observations, we run a cosmological simulation in a 30$h^{-1}$ cMpc/size volume down to $z approx 4$. We use the hydrodynamical code dustyGadget, which accounts for the production of dust by stellar populations and its evolution in the ISM. We find that the cosmic dust density parameter ($Omega_{rm d}$) is mainly driven by stellar dust at $z gtrsim 10$, so that mass- and metallicity-dependent yields are required to assess the dust content in the first galaxies. At $z lesssim 9$ the growth of grains in the ISM of evolved systems (Log$(M_{star}/M_{odot})>8.5$) significantly increases their dust mass, in agreement with observations in the redshift range $4 lesssim z < 8$. Our simulation shows that the variety of high redshift galaxies observed with ALMA can naturally be accounted for by modeling the grain-growth timescale as a function of the physical conditions in the gas cold phase. In addition, the trends of dust-to-metal (DTM) and dust-to-gas (${cal D}$) ratios are compatible with the available data. A qualitative investigation of the inhomogeneous dust distribution in a representative massive halo at $z approx 4$ shows that dust is found from the central galaxy up to the closest satellites along polluted filaments with $rm Log({cal D}) leq -2.4$, but sharply declines at distances $d gtrsim 30$ kpc along many lines of sight, where $rm Log({cal D}) lesssim -4.0$.
We report on ~0.35(~2 kpc) resolution observations of the [CII] and dust continuum emission from five z>6 quasar host-companion galaxy pairs obtained with the Atacama Large Millimeter/submillimeter Array. The [CII] emission is resolved in all galaxies, with physical extents of 3.2-5.4 kpc. The dust continuum is on-average 40% more compact, which results in larger [CII] deficits in the center of the galaxies. However, the measured [CII] deficits are fully consistent with those found at lower redshifts. Four of the galaxies show [CII] velocity fields that are consistent with ordered rotation, while the remaining six galaxies show no clear velocity gradient. All galaxies have high (~80-200 km/s) velocity dispersions, consistent with the interpretation that the interstellar medium (ISM) of these high redshift galaxies is turbulent. By fitting the galaxies with kinematic models, we estimate the dynamical mass of these systems, which range between (0.3 -> 5.4) x 1E10 Msun. For the three closest separation galaxy pairs, we observe dust and [CII] emission from gas in between and surrounding the galaxies, which is an indication that tidal interactions are disturbing the gas in these systems. Although gas exchange in these tidal interactions could power luminous quasars, the existence of quasars in host galaxies without nearby companions suggests that tidal interactions are not the only viable method for fueling their active centers. These observations corroborate the assertion that accreting supermassive black holes do not substantially contribute to the [CII] and dust continuum emission of the quasar host galaxies, and showcase the diverse ISM properties of galaxies when the universe was less than one billion years old.
126 - Hikari Shirakata 2014
We have investigated effects of dust attenuation on quasar luminosity functions using a semi-analytic galaxy formation model combined with a large cosmological N-body simulation. We estimate the dust attenuation of quasars self-consistently with that of galaxies by considering the dust in their host bulges. We find that the luminosity of the bright quasars is strongly dimmed by the dust attenuation, about 2 mag in the B-band. Assuming the empirical bolometric corrections for active galactic nuclei (AGNs) by Marconi et al., we find that this dust attenuation is too strong to explain the B-band and X-ray quasar luminosity functions simultaneously. We consider two possible mechanisms that weaken the dust attenuation. As such a mechanism, we introduce a time delay for AGN activity, that is, gas fueling to a central black hole starts some time after the beginning of the starburst induced by a major merger. The other is the anisotropy in the dust distribution. We find that in order to make the dust attenuation of the quasars negligible, either the gas accretion into the black holes has to be delayed at least three times the dynamical timescale of their host bulges or the dust covering factor is as small as 0.1.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا