Do you want to publish a course? Click here

High Frequency Sound in a Unitary Fermi Gas

296   0   0.0 ( 0 )
 Added by Chris Vale
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an experimental and theoretical study of the phonon mode in a unitary Fermi gas. Using two-photon Bragg spectroscopy, we measure excitation spectra at a momentum of approximately half the Fermi momentum, both above and below the superfluid critical temperature $T_mathrm{c}$. Below $T_mathrm{c}$, the dominant excitation is the Bogoliubov-Anderson (BA) phonon mode, driven by gradients in the phase of the superfluid order parameter. The temperature dependence of the BA phonon is consistent with a theoretical model based on the quasiparticle random phase approximation in which the dominant damping mechanism is via collisions with thermally excited quasiparticles. As the temperature is increased above $T_mathrm{c}$, the phonon evolves into a strongly damped collisional mode, accompanied by an abrupt increase in spectral width. Our study reveals strong similarities between sound propagation in the unitary Fermi gas and liquid helium.



rate research

Read More

282 - Zhen-Kai Lu , S.I. Matveenko , 2013
We study zero sound in a weakly interacting 2D gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero sound is provided by both mean field and many-body (beyond mean field) effects, and the anisotropy of the sound velocity is the same as the one of the Fermi velocity. The damping of zero sound modes can be much slower than that of quasiparticle excitations of the same energy. One thus has wide possibilities for the observation of zero sound modes in experiments with 2D fermionic dipoles, although the zero sound peak in the structure function is very close to the particle-hole continuum.
Transport of strongly interacting fermions governs modern materials -- from the high-$T_c$ cuprates to bilayer graphene --, but also nuclear fission, the merging of neutron stars and the expansion of the early universe. Here we observe a universal quantum limit of diffusivity in a homogeneous, strongly interacting Fermi gas of atoms by studying sound propagation and its attenuation via the coupled transport of momentum and heat. In the normal state, the sound diffusivity ${D}$ monotonically decreases upon lowering the temperature $T$, in contrast to the diverging behavior of weakly interacting Fermi liquids. As the superfluid transition temperature is crossed, ${D}$ attains a universal value set by the ratio of Plancks constant ${h}$ and the particle mass ${m}$. This finding of quantum limited sound diffusivity informs theories of fermion transport, with relevance for hydrodynamic flow of electrons, neutrons and quarks.
260 - E. D. Kuhnle , S. Hoinka , P. Dyke 2010
The contact ${cal I}$, introduced by Tan, has emerged as a key parameter characterizing universal properties of strongly interacting Fermi gases. For ultracold Fermi gases near a Feshbach resonance, the contact depends upon two quantities: the interaction parameter $1/(k_F a)$, where $k_F$ is the Fermi wave-vector and $a$ is the $s$-wave scattering length, and the temperature $T/T_F$, where $T_F$ is the Fermi temperature. We present the first measurements of the temperature dependence of the contact in a unitary Fermi gas using Bragg spectroscopy. The contact is seen to follow the predicted decay with temperature and shows how pair-correlations at high momentum persist well above the superfluid transition temperature.
We elucidate universal many-body properties of a one-dimensional, two-component ultracold Fermi gas near the $p$-wave Feshbach resonance. The low-energy scattering in this system can be characterized by two parameters, that is, $p$-wave scattering length and effective range. At the unitarity limit where the $p$-wave scattering length diverges and the effective range is reduced to zero without conflicting with the causality bound, the system obeys universal thermodynamics as observed in a unitary Fermi gas with contact $s$-wave interaction in three dimensions. It is in contrast to a Fermi gas with the $p$-wave resonance in three dimensions in which the effective range is inevitably finite. We present the universal equation of state in this unitary $p$-wave Fermi gas within the many-body $T$-matrix approach as well as the virial expansion method. Moreover, we examine the single-particle spectral function in the high-density regime where the virial expansion is no longer valid. On the basis of the Hartree-like self-energy shift at the divergent scattering length, we conjecture that the equivalence of the Bertsch parameter across spatial dimensions holds even for a one-dimensional unitary $p$-wave Fermi gas.
Quantized vortices carry the angular momentum in rotating superfluids, and are key to the phenomenon of quantum turbulence. Advances in ultra-cold atom technology enable quantum turbulence to be studied in regimes with both experimental and theoretical control, unlike the original contexts of superfluid helium experiments. While much work has been performed with bosonic systems, detailed studies of fermionic quantum turbulence are nascent, despite wide applicability to other contexts such as rotating neutron stars. In this paper, we present the first large-scale study of quantum turbulence in rotating fermionic superfluids using an accurate orbital based time-dependent density functional theory (DFT) called the superfluid local density approximation (SLDA). We identify two different modes of turbulent decay in the dynamical equilibration of a rotating fermionic superfluid, and contrast these results with a computationally simpler orbital-free DFT, which we find can qualitatively reproduce these decay mechanisms if dissipation is explicitly included. These results demonstrate that one-body dissipation mechanisms intrinsic to fermionic superfluids play a key role differentiating fermionic from bosonic turbulence, but also suggest that simpler orbital-free theories may be corrected so that these more efficient techniques can be used to model extended physical systems such as neutron superfluids in neutron stars.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا