No Arabic abstract
The dynamics of self-gravitating fluid bodies is described by the Euler-Einstein system of partial differential equations. The break-down of well-posedness on the fluid-vacuum interface remains a challenging open problem, which is manifested in simulations of oscillating or inspiraling binary neutron-stars. We formulate and implement a well-posed canonical hydrodynamic scheme, suitable for neutron-star simulations in numerical general relativity. The scheme uses a variational principle by Carter-Lichnerowicz stating that barotropic fluid motions are conformally geodesic and Helmholtzs third theorem stating that initially irrotational flows remain irrotational. We apply this scheme in 3+1 numerical general relativity to evolve the canonical momentum of a fluid element via the Hamilton-Jacobi equation. We explore a regularization scheme for the Euler equations, that uses a fiducial atmosphere in hydrostatic equilibrium and allows the pressure to vanish, while preserving strong hyperbolicity on the vacuum boundary. The new regularization scheme resolves a larger number of radial oscillation modes compared to standard, non-equilibrium atmosphere treatments.
In this work we study the theory of linearized gravity via the Hamilton-Jacobi formalism. We make a brief review of this theory and its Lagrangian description, as well as a review of the Hamilton-Jacobi approach for singular systems. Then we apply this formalism to analyze the constraint structure of the linearized gravity in instant and front-form dynamics.
We present the first numerical solutions of the causal, stable relativistic Navier-Stokes equations as formulated by Bemfica, Disconzi, Noronha, and Kovtun (BDNK). For this initial investigation we restrict to plane-symmetric configurations of a conformal fluid in Minkowski spacetime. We consider evolution of three classes of initial data: a smooth (initially) stationary concentration of energy, a standard shock tube setup, and a smooth shockwave setup. We compare these solutions to those obtained with the Muller-Israel-Stewart (MIS) formalism, variants of which are the common tools used to model relativistic, viscous fluids. We find that for the two smooth initial data cases, simple finite difference methods are adequate to obtain stable, convergent solutions to the BDNK equations. For low viscosity, the MIS and BDNK evolutions show good agreement. At high viscosity the solutions begin to differ in regions with large gradients, and there the BDNK solutions can (as expected) exhibit violation of the weak energy condition. This behavior is transient, and the solutions evolve toward a hydrodynamic regime in a way reminiscent of an approach to a universal attractor. For the shockwave problem, we give evidence that if a hydrodynamic frame is chosen so that the maximum characteristic speed of the BDNK system is the speed of light (or larger), arbitrarily strong shockwaves are smoothly resolved. Regarding the shock tube problem, it is unclear whether discontinuous initial data is mathematically well-posed for the BDNK system, even in a weak sense. Nevertheless we attempt numerical solution, and then need to treat the perfect fluid terms using high-resolution shock-capturing methods. When such methods can successfully evolve the solution beyond the initial time, subsequent evolution agrees with corresponding MIS solutions, as well as the perfect fluid solution in the limit of zero viscosity.
The Hamilton-Jacobi analysis for gravity without dynamics is performed. We report a detailed analysis where the complete set of Hamilton-Jacobi constraints, the characteristic equations and the gauge transformations of the theory are found. We compare our results with those reported in the literature where alternative approaches are used. In addition, we complete our work by performing the canonical covariant analysis by constructing a gauge invariant symplectic structure, and we find a full consistency between the results obtained from both approaches.
We present a new methodology for simulating self-gravitating general-relativistic fluids. In our approach the fluid is modelled by means of Lagrangian particles in the framework of a general-relativistic (GR) Smooth Particle Hydrodynamics (SPH) formulation, while the spacetime is evolved on a mesh according to the BSSN formulation that is also frequently used in Eulerian GR-hydrodynamics. To the best of our knowledge this is the first Lagrangian fully general relativistic hydrodynamics code (all previous SPH approaches used approximations to GR-gravity). A core ingredient of our particle-mesh approach is the coupling between the gas (represented by particles) and the spacetime (represented by a mesh) for which we have developed a set of sophisticated interpolation tools that are inspired by other particle-mesh approaches, in particular by vortex-particle methods. One advantage of splitting the methodology between matter and spacetime is that it gives us more freedom in choosing the resolution, so that -- if the spacetime is smooth enough -- we obtain good results already with a moderate number of grid cells and can focus the computational effort on the simulation of the matter. Further advantages of our approach are the ease with which ejecta can be tracked and the fact that the neutron star surface remains well-behaved and does not need any particular treatment. In the hydrodynamics part of the code we use a number of techniques that are new to SPH, such as reconstruction, slope limiting and steering dissipation by monitoring entropy conservation. We describe here in detail the employed numerical methods and demonstrate the code performance in a number of benchmark problems ranging from shock tube tests, over Cowling approximations to the fully dynamical evolution of neutron stars in self-consistently evolved spacetimes.
We investigate the tidal deformability of a superfluid neutron star. We calculate the equilibrium structure in the general relativistic two-fluid formalism with entrainment effect where we take neutron superfluid as one fluid and the other fluid is comprised of protons and electrons, making it a charge neutral fluid. We use a relativistic mean field model for the equation of state of matter where the interaction between baryons is mediated by the exchange $sigma$, $omega$ and $rho$ mesons. Then, we study the linear, static $l=2$ perturbation on the star to compute the electric-type Love number following Hinderers prescription.