No Arabic abstract
We present a new methodology for simulating self-gravitating general-relativistic fluids. In our approach the fluid is modelled by means of Lagrangian particles in the framework of a general-relativistic (GR) Smooth Particle Hydrodynamics (SPH) formulation, while the spacetime is evolved on a mesh according to the BSSN formulation that is also frequently used in Eulerian GR-hydrodynamics. To the best of our knowledge this is the first Lagrangian fully general relativistic hydrodynamics code (all previous SPH approaches used approximations to GR-gravity). A core ingredient of our particle-mesh approach is the coupling between the gas (represented by particles) and the spacetime (represented by a mesh) for which we have developed a set of sophisticated interpolation tools that are inspired by other particle-mesh approaches, in particular by vortex-particle methods. One advantage of splitting the methodology between matter and spacetime is that it gives us more freedom in choosing the resolution, so that -- if the spacetime is smooth enough -- we obtain good results already with a moderate number of grid cells and can focus the computational effort on the simulation of the matter. Further advantages of our approach are the ease with which ejecta can be tracked and the fact that the neutron star surface remains well-behaved and does not need any particular treatment. In the hydrodynamics part of the code we use a number of techniques that are new to SPH, such as reconstruction, slope limiting and steering dissipation by monitoring entropy conservation. We describe here in detail the employed numerical methods and demonstrate the code performance in a number of benchmark problems ranging from shock tube tests, over Cowling approximations to the fully dynamical evolution of neutron stars in self-consistently evolved spacetimes.
We describe and present the first observational evidence that light propagating near a rotating black hole is twisted in phase and carries orbital angular momentum. The novel use of this physical observable as an additional tool for the previously known techniques of gravitational lensing allows us to directly measure, for the first time, the spin parameter of a black hole. With the additional information encoded in the orbital angular momentum, not only can we reveal the actual rotation of the compact object, but we can also use rotating black holes as probes to test General Relativity.
We present the first numerical solutions of the causal, stable relativistic Navier-Stokes equations as formulated by Bemfica, Disconzi, Noronha, and Kovtun (BDNK). For this initial investigation we restrict to plane-symmetric configurations of a conformal fluid in Minkowski spacetime. We consider evolution of three classes of initial data: a smooth (initially) stationary concentration of energy, a standard shock tube setup, and a smooth shockwave setup. We compare these solutions to those obtained with the Muller-Israel-Stewart (MIS) formalism, variants of which are the common tools used to model relativistic, viscous fluids. We find that for the two smooth initial data cases, simple finite difference methods are adequate to obtain stable, convergent solutions to the BDNK equations. For low viscosity, the MIS and BDNK evolutions show good agreement. At high viscosity the solutions begin to differ in regions with large gradients, and there the BDNK solutions can (as expected) exhibit violation of the weak energy condition. This behavior is transient, and the solutions evolve toward a hydrodynamic regime in a way reminiscent of an approach to a universal attractor. For the shockwave problem, we give evidence that if a hydrodynamic frame is chosen so that the maximum characteristic speed of the BDNK system is the speed of light (or larger), arbitrarily strong shockwaves are smoothly resolved. Regarding the shock tube problem, it is unclear whether discontinuous initial data is mathematically well-posed for the BDNK system, even in a weak sense. Nevertheless we attempt numerical solution, and then need to treat the perfect fluid terms using high-resolution shock-capturing methods. When such methods can successfully evolve the solution beyond the initial time, subsequent evolution agrees with corresponding MIS solutions, as well as the perfect fluid solution in the limit of zero viscosity.
We present SphericalNR, a new framework for the publicly available Einstein Toolkit that numerically solves the Einstein field equations coupled to the equations of general relativistic magnetohydrodynamics (GRMHD) in a 3+1 split of spacetime in spherical coordinates without symmetry assumptions. The spacetime evolution is performed using reference-metr
We have studied the dynamics of an equal-mass magnetized neutron-star binary within a resistive magnetohydrodynamic (RMHD) approach in which the highly conducting stellar interior is matched to an electrovacuum exterior. Because our analysis is aimed at assessing the modifications introduced by resistive effects on the dynamics of the binary after the merger and through to collapse, we have carried out a close comparison with an equivalent simulation performed within the traditional ideal magnetohydrodynamic approximation. We have found that there are many similarities between the two evolutions but also one important difference: the survival time of the hyper massive neutron star increases in a RMHD simulation. This difference is due to a less efficient magnetic-braking mechanism in the resistive regime, in which matter can move across magnetic-field lines, thus reducing the outward transport of angular momentum. Both the RMHD and the ideal magnetohydrodynamic simulations carried here have been performed at higher resolutions and with a different grid structure than those in previous work of ours [L. Rezzolla, B. Giacomazzo, L. Baiotti, J. Granot, C. Kouveliotou, and M. A. Aloy, Astrophys. J. Letters 732, L6 (2011)], but confirm the formation of a low-density funnel with an ordered magnetic field produced by the black hole--torus system. In both regimes the magnetic field is predominantly toroidal in the highly conducting torus and predominantly poloidal in the nearly evacuated funnel. Reconnection processes or neutrino annihilation occurring in the funnel, none of which we model, could potentially increase the internal energy in the funnel and launch a relativistic outflow, which, however, is not produced in these simulations.
Gravitomagnetic quasi-normal modes of neutron stars are resonantly excited by tidal effects during a binary inspiral, leading to a potentially measurable effect in the gravitational-wave signal. We take an important step towards incorporating these effects in waveform models by developing a relativistic effective action for the gravitomagnetic dynamics that clarifies a number of subtleties. Working in the slow-rotation limit, we first consider the post-Newtonian approximation and explicitly derive the effective action from the equations of motion. We demonstrate that this formulation opens a way to compute mode frequencies, yields insights into the relevant matter variables, and elucidates the role of a shift symmetry of the fluid properties under a displacement of the gravitomagnetic mode amplitudes. We then construct a fully relativistic action based on the symmetries and a power counting scheme. This action involves four coupling coefficients that depend on the internal structure of the neutron star and characterize the key matter parameters imprinted in the gravitational waves. We show that, after fixing one of the coefficients by normalization, the other three directly involve the two kinds of gravitomagnetic Love numbers (static and irrotational), and the mode frequencies. We discuss several interesting features and dynamical consequences of this action, and analyze the frequency-domain response function (the frequency-dependent ratio between the induced flux quadrupole and the external gravitomagnetic field), and a corresponding Love operator representing the time-domain response. Our results provide the foundation for deriving precision predictions of gravitomagnetic effects, and the nuclear physics they encode, for gravitational-wave astronomy.