Do you want to publish a course? Click here

A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation

113   0   0.0 ( 0 )
 Added by Yanan Li
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we study the asymptotic behavior of solutions for a non-local non-autonomous scalar quasilinear parabolic problem in one space dimension. Our aim is to give a fairly complete description of the the forwards asymptotic behavior of solutions for models with Kirchoff type diffusion. In the autonomous we use the gradient structure of the model, some symmetry properties of solutions and develop comparison results to obtain a sequence of bifurcations of equilibria analogous to that seen in the model with local diffusivity. We give conditions so that the autonomous problem admits at most one positive equilibrium and analyse the existence of sign changing equilibria. Also using symmetry and our comparison results we construct what is called non-autonomous equilibria to describe part of the asymptotics of the associated non-autonomous non-local parabolic problem.



rate research

Read More

In this paper we introduce a model describing diffusion of species by a suitable regularization of a forward-backward parabolic equation. In particular, we prove existence and uniqueness of solutions, as well as continuous dependence on data, for a system of partial differential equations and inclusion, which may be interpreted, e.g., as evolving equation for physical quantities such as concentration and chemical potential. The model deals with a constant mobility and it is recovered from a possibly non-convex free-energy density. In particular, we render a general viscous regularization via a maximal monotone graph acting on the time derivative of the concentration and presenting a strong coerciveness property.
In this paper, we consider the following non-local semi-linear parabolic equation with advection: for $1 le p<1+frac{2}{N}$, begin{equation*} begin{cases} u_t+v cdot abla u-Delta u=|u|^p-int_{mathbb T^N} |u|^p quad & textrm{on} quad mathbb T^N, u textrm{periodic} quad & textrm{on} quad partial mathbb T^N end{cases} end{equation*} with initial data $u_0$ defined on $mathbb T^N$. Here $v$ is an incompressible flow, and $mathbb T^N=[0, 1]^N$ is the $N$-torus with $N$ being the dimension. We first prove the local existence of mild solutions to the above equation for arbitrary data in $L^2$. We then study the global existence of the solutions under the following two scenarios: (1). when $v$ is a mixing flow; (2). when $v$ is a shear flow. More precisely, we show that under these assumptions, there exists a global solution to the above equation in the sense of $L^2$.
256 - L. Chiarini , C. Landim 2019
We examine in this article the one-dimensional, non-local, singular SPDE begin{equation*} partial_t u ;=; -, (-Delta)^{1/2} u ,-, sinh(gamma u) ,+, xi;, end{equation*} where $gammain mathbb{R}$, $(-Delta)^{1/2}$ is the fractional Laplacian of order $1/2$, $xi$ the space-time white noise in $mathbb{R} times mathbb{T}$, and $mathbb{T}$ the one-dimensional torus. We show that for $0<gamma^2<pi/7$ the Da Prato--Debussche method applies. One of the main difficulties lies in the derivation of a Schauder estimate for the semi-group associated to the fractional Laplacian due to the lack of smoothness resulting from the long range interaction.
This paper includes a proof of well-posedness of an initial-boundary value problem involving a system of degenerate non-local parabolic PDE which naturally arises in the study of derivative pricing in a generalized market model. In a semi-Markov modulated GBM model the locally risk minimizing price function satisfies a special case of this problem. We study the well-posedness of the problem via a Volterra integral equation of second kind. A probabilistic approach, in particular the method of conditioning on stopping times is used for showing uniqueness.
This paper is concerned with pullback attractors of the stochastic p-Laplace equation defined on the entire space R^n. We first establish the asymptotic compactness of the equation in L^2(R^n) and then prove the existence and uniqueness of non-autonomous random attractors. This attractor is pathwise periodic if the non-autonomous deterministic forcing is time periodic. The difficulty of non-compactness of Sobolev embeddings on R^n is overcome by the uniform smallness of solutions outside a bounded domain.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا