Do you want to publish a course? Click here

Hunting the Glashow Resonance with PeV Neutrino Telescopes

279   0   0.0 ( 0 )
 Added by Qinrui Liu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Glashow resonant scattering, $i.e$. ${overline{ u}^{}_{e} + e^{-} rightarrow W^{-} rightarrow text{anything}}$, offers us a possibility of disentangling $overline{ u}^{}_{e}$ from the total astrophysical neutrino fluxes. Meanwhile, a great number of high-energy neutrino telescopes, with various detection mechanisms, are advancing towards a better understanding of one of the most energetic frontiers of the Universe. In this work, we investigate a connection between through-going muons at IceCube and the Glashow resonance signal through the channel $W^{-} rightarrow mu$. We find that for IceCube, muons from $overline{ u}^{}_{e}$ can induce a $sim20%$ excess of PeV events around the horizontal direction. However, the current statistic of IceCube is not enough to observe such an excess. We also address the novel possibility of $overline{ u}^{}_{e}$ detection via $W^{-} rightarrow tau$ at telescopes aiming to detect Earth-skimming and mountain-penetrating neutrinos. The subsequent hadronic decay of a tau will induce an extensive air shower which can be detected by telescopes with Cherenkov or fluorescence techniques. Similar to IceCube, it is challenging to observe the Glashow resonance excess from the Earth-skimming neutrinos. Nevertheless, we find it is promising to observe Glashow resonance events with a mountain as the target.



rate research

Read More

The IceCube neutrino discovery was punctuated by three showers with $E_ u$ ~ 1-2 PeV. Interest is intense in possible fluxes at higher energies, though a marked deficit of $E_ u$ ~ 6 PeV Glashow resonance events implies a spectrum that is soft and/or cutoff below ~few PeV. However, IceCube recently reported a through-going track event depositing 2.6 $pm$ 0.3 PeV. A muon depositing so much energy can imply $E_{ u_mu} gtrsim$ 10 PeV. We show that extending the soft $E_ u^{-2.6}$ spectral fit from TeV-PeV data is unlikely to yield such an event. Alternatively, a tau can deposit this much energy, though requiring $E_{ u_tau}$ ~10x higher. We find that either scenario hints at a new flux, with the hierarchy of $ u_mu$ and $ u_tau$ energies suggesting a window into astrophysical neutrinos at $E_ u$ ~ 100 PeV if a tau. We address implications, including for ultrahigh-energy cosmic-ray and neutrino origins.
64 - Bei Zhou , John F. Beacom 2019
Detecting TeV--PeV cosmic neutrinos provides crucial tests of neutrino physics and astrophysics. The statistics of IceCube and the larger proposed IceCube-Gen2 demand calculations of neutrino-nucleus interactions subdominant to deep-inelastic scattering, which is mediated by weak-boson couplings to nuclei. The largest such interactions are W-boson and trident production, which are mediated instead through photon couplings to nuclei. In a companion paper [1], we make the most comprehensive and precise calculations of those interactions at high energies. In this paper, we study their phenomenological consequences. We find that: (1) These interactions are dominated by the production of on-shell W-bosons, which carry most of the neutrino energy, (2) The cross section on water/iron can be as large as 7.5%/14% that of charged-current deep-inelastic scattering, much larger than the quoted uncertainty on the latter, (3) Attenuation in Earth is increased by as much as 15%, (4) W-boson production on nuclei exceeds that through the Glashow resonance on electrons by a factor of $simeq$ 20 for the best-fit IceCube spectrum, (5) The primary signals are showers that will significantly affect the detection rate in IceCube-Gen2; a small fraction of events give unique signatures that may be detected sooner.
We perform a new dark matter hot spot analysis using ten years of public IceCube data. In this analysis we assume dark matter self-annihilates to neutrino pairs and treat the production sites as discrete point sources. For neutrino telescopes these sites will appear as hot spots in the sky, possibly outshining other standard model neutrino sources. Comparing to galactic center analyses, we show that this approach is a powerful tool and capable of setting the highest neutrino detector limits for dark matter masses between 10 TeV and 100 PeV. This is due to the inclusion of spatial information in addition to the typically used energy deposition in the analysis.
We calculate the Doppler broadening of the $W^-$ resonance produced in $bar{ u}_e e^-$ collisions of cosmic anti-neutrinos with $E_{ u}approx 6.3 PeV$ with electrons in atoms up to Iron. Revisiting this issue is prompted by recent observations of PeV neutrinos by Ice-Cube. Despite its poor energy resolution, the $20%$ Doppler broadening of the resonance due to electronic motions can produce observable effects via non-linear neutrino absorption near the resonance. The attendant suppression of the peak cross section allows $bar{ u}_e$ to travel correspondingly longer distances. While this effect is unlikely to be directly detected in the near future, it may facilitate terrestrial tomography at depths of $sim 10 km$, complementing deeper explorations using the more frequent nuclear interactions at lower energies.
We present the results of searches for point-like sources of neutrinos based on the first combined analysis of data from both the ANTARES and IceCube neutrino telescopes. The combination of both detectors which differ in size and location forms a window in the Southern sky where the sensitivity to point sources improves by up to a factor of two compared to individual analyses. Using data recorded by ANTARES from 2007 to 2012, and by IceCube from 2008 to 2011, we search for sources of neutrino emission both across the Southern sky and from a pre-selected list of candidate objects. No significant excess over background has been found in these searches, and flux upper limits for the candidate sources are presented for $E^{-2.5}$ and $E^{-2}$ power-law spectra with different energy cut-offs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا