No Arabic abstract
We study generalized discrete symmetries of quantum field theories in 1+1D generated by topological defect lines with no inverse. In particular, we describe t Hooft anomalies and classify gapped phases stabilized by these symmetries, including new 1+1D topological phases. The algebra of these operators is not a group but rather is described by their fusion ring and crossing relations, captured algebraically as a fusion category. Such data defines a Turaev-Viro/Levin-Wen model in 2+1D, while a 1+1D system with this fusion category acting as a global symmetry defines a boundary condition. This is akin to gauging a discrete global symmetry at the boundary of Dijkgraaf-Witten theory. We describe how to ungauge the fusion category symmetry in these boundary conditions and separate the symmetry-preserving phases from the symmetry-breaking ones. For Tambara-Yamagami categories and their generalizations, which are associated with Kramers-Wannier-like self-dualities under orbifolding, we develop gauge theoretic techniques which simplify the analysis. We include some examples of CFTs with fusion category symmetry derived from Kramers-Wannier-like dualities as an appetizer for the Part II companion paper.
We study generalized symmetries of quantum field theories in 1+1D generated by topological defect lines with no inverse. This paper follows our companion paper on gapped phases and anomalies associated with these symmetries. In the present work we focus on identifying fusion category symmetries, using both specialized 1+1D methods such as the modular bootstrap and (rational) conformal field theory (CFT), as well as general methods based on gauging finite symmetries, that extend to all dimensions. We apply these methods to $c = 1$ CFTs and uncover a rich structure. We find that even those $c = 1$ CFTs with only finite group-like symmetries can have continuous fusion category symmetries, and prove a Noether theorem that relates such symmetries in general to non-local conserved currents. We also use these symmetries to derive new constraints on RG flows between 1+1D CFTs.
We derive a selection rule among the $(1+1)$-dimensional SU(2) Wess-Zumino-Witten theories, based on the global anomaly of the discrete $mathbb{Z}_2$ symmetry found by Gepner and Witten. In the presence of both the SU(2) and $mathbb{Z}_2$ symmetries, a renormalization-group flow is possible between level-$k$ and level-$k$ Wess-Zumino-Witten theories only if $kequiv k mod{2}$. This classifies the Lorentz-invariant, SU(2)-symmetric critical behavior into two symmetry-protected categories corresponding to even and odd levels,restricting possible gapless critical behavior of translation-invariant quantum spin chains.
Symmetries in Quantum Field Theory may have t Hooft anomalies. If the symmetry is unbroken in the vacuum, the anomaly implies a nontrivial low-energy limit, such as gapless modes or a topological field theory. If the symmetry is spontaneously broken, for the continuous case, the anomaly implies low-energy theorems about certain couplings of the Goldstone modes. Here we study the case of spontaneously broken discrete symmetries, such as Z/2 and T. Symmetry breaking leads to domain walls, and the physics of the domain walls is constrained by the anomaly. We investigate how the physics of the domain walls leads to a matching of the original discrete anomaly. We analyze the symmetry structure on the domain wall, which requires a careful analysis of some properties of the unbreakable CPT symmetry. We demonstrate the general results on some examples and we explain in detail the mod 4 periodic structure that arises in the Z/2 and T case. This gives a physical interpretation for the Smith isomorphism, which we also extend to more general abelian groups. We show that via symmetry breaking and the analysis of the physics on the wall, the computations of certain discrete anomalies are greatly simplified. Using these results we perform new consistency checks on the infrared phases of 2+1 dimensional QCD.
We study a holographic model where translations are both spontaneously and explicitly broken, leading to the presence of (pseudo)-phonons in the spectrum. The weak explicit breaking is due to two independent mechanisms: a small source for the condensate itself and additional linearly space-dependent marginal operators. The low energy dynamics of the model is described by Wigner crystal hydrodynamics. In absence of a source for the condensate, the phonons remain gapless, but momentum is relaxed. Turning on a source for the condensate damps and pins the phonons. Finally, we verify that the universal relation between the phonon damping rate, mass and diffusivity reported in arXiv:1812.08118 continues to hold in this model for weak enough explicit breaking.
In principle, there is no obstacle to gapping fermions preserving any global symmetry that does not suffer a t Hooft anomaly. In practice, preserving a symmetry that is realised on fermions in a chiral manner necessitates some dynamics beyond simple quadratic mass terms. We show how this can be achieved using familiar results about supersymmetric gauge theories and, in particular, the phenomenon of confinement without chiral symmetry breaking. We present simple models that gap fermions while preserving a symmetry group under which they transform in chiral representations. For example, we show how to gap a collection of 4d fermions that carry the quantum numbers of one generation of the Standard Model, but without breaking electroweak symmetry. We further show how to gap fermions in groups of 16 while preserving certain discrete symmetries that exhibit a mod 16 anomaly.