No Arabic abstract
We study a holographic model where translations are both spontaneously and explicitly broken, leading to the presence of (pseudo)-phonons in the spectrum. The weak explicit breaking is due to two independent mechanisms: a small source for the condensate itself and additional linearly space-dependent marginal operators. The low energy dynamics of the model is described by Wigner crystal hydrodynamics. In absence of a source for the condensate, the phonons remain gapless, but momentum is relaxed. Turning on a source for the condensate damps and pins the phonons. Finally, we verify that the universal relation between the phonon damping rate, mass and diffusivity reported in arXiv:1812.08118 continues to hold in this model for weak enough explicit breaking.
In phases where translations are spontaneously broken, new gapless degrees of freedom appear in the low energy spectrum (the phonons). At long wavelengths, they couple to small fluctuations of the conserved densities of the system. This mixing is captured by new diffusive transport coefficients, as well as qualitatively different collective modes, such as shear sound modes. We use Gauge/Gravity duality to model such phases and analytically compute the corresponding diffusivities in terms of data {of the dual background black hole solution}. In holographic quantum critical low temperature phases, we show that these diffusivities are governed by universal relaxation of the phonons into the heat current when the dynamical critical exponent $z>2$. Finally, we compute the spectrum of transverse collective modes and show that their dispersion relation matches the dispersion relation of the shear sound modes of the hydrodynamic theory of crystalline solids.
In this paper, we show that a simple generalization of the holographic axion model can realize spontaneous breaking of translational symmetry by considering a special gauge-axion higher derivative term. The finite real part and imaginary part of the stress tensor imply that the dual boundary system is a viscoelastic solid. By calculating quasi-normal modes and making a comparison with predictions from the elasticity theory, we verify the existence of phonons and pseudo-phonons, where the latter is realized by introducing a weak explicit breaking of translational symmetry, in the transverse channel. Finally, we discuss how the phonon dynamics affects the charge transport.
We study the emergence of Nambu-Goldstone modes due to broken translation symmetry in field theory. Purely spontaneous breaking yields a massless phonon which develops a mass upon introducing a perturbative explicit breaking. The pseudo-phonon mass agrees with Gell Mann-Oakes-Renner relations. We analyze the simplest possible theories featuring gradient Mexican hats and describing space-dependent order parameters. We comment on homogeneous translation breaking and the connections with holographic Q-lattices.
In principle, there is no obstacle to gapping fermions preserving any global symmetry that does not suffer a t Hooft anomaly. In practice, preserving a symmetry that is realised on fermions in a chiral manner necessitates some dynamics beyond simple quadratic mass terms. We show how this can be achieved using familiar results about supersymmetric gauge theories and, in particular, the phenomenon of confinement without chiral symmetry breaking. We present simple models that gap fermions while preserving a symmetry group under which they transform in chiral representations. For example, we show how to gap a collection of 4d fermions that carry the quantum numbers of one generation of the Standard Model, but without breaking electroweak symmetry. We further show how to gap fermions in groups of 16 while preserving certain discrete symmetries that exhibit a mod 16 anomaly.
We investigate the behavior of genuine multiparticle entanglement, as quantified by the generalized geometric measure, in gapless-to-gapped quantum transitions of one- and two-dimensional quantum spin models. The investigations are performed in the exactly solvable one-dimensional $XY$ models, as well as two-dimensional frustrated $J_{1}-J_{2}$ models, including the Shastry-Sutherland model. The generalized geometric measure shows non-monotonic features near such transitions in the frustrated quantum systems. We also compare the features of the generalized geometric measure near the quantum critical points with the same for measures of bipartite quantum correlations. The multipartite quantum correlation measure turns out to be a better indicator of quantum critical points than the bipartite measures, especially for two-dimensional models.