Do you want to publish a course? Click here

RELICS: A Very Large ($theta_{E}sim40$) Cluster Lens -- RXC J0032.1+1808

260   0   0.0 ( 0 )
 Added by Ana Acebron
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Extensive surveys with the textit{Hubble Space Telescope} (HST) over the past decade, targeting some of the most massive clusters in the sky, have uncovered dozens of galaxy-cluster strong lenses. The massive cluster strong-lens scale is typically $theta_{E}sim10arcsec$ to $sim30-35arcsec$, with only a handful of clusters known with Einstein radii $theta_{E}sim40arcsec$ or above (for $z_{source}=2$, nominally). Here we report another very large cluster lens, RXC J0032.1+1808 ($z=0.3956$), the second richest cluster in the redMapper cluster catalog and the 85th most massive cluster in the Planck Sunyaev-Zeldovich catalog. With our Light-Traces-Mass and fully parametric (dPIEeNFW) approaches, we construct strong lensing models based on 18 multiple images of 5 background galaxies newly identified in the textit{Hubble} data mainly from the textit{Reionization Lensing Cluster Survey} (RELICS), in addition to a known sextuply imaged system in this cluster. Furthermore, we compare these models to Lenstool and GLAFIC models that were produced independently as part of the RELICS program. All models reveal a large effective Einstein radius of $theta_{E}simeq40arcsec$ ($z_{source}=2$), owing to the obvious concentration of substructures near the cluster center. Although RXC J0032.1+1808 has a very large critical area and high lensing strength, only three magnified high-redshift candidates are found within the field targeted by RELICS. Nevertheless, we expect many more high-redshift candidates will be seen in wider and deeper observations with textit{Hubble} or emph{JWST}. Finally, the comparison between several algorithms demonstrates that the total error budget is largely dominated by systematic uncertainties.



rate research

Read More

We present a lens model for the cluster SPT-CLJ0615$-$5746, which is the highest redshift ($z=0.972$) system in the Reionization of Lensing Clusters Survey (RELICS), making it the highest redshift cluster for which a full strong lens model is published. We identify three systems of multiply-imaged lensed galaxies, two of which we spectroscopically confirm at $z=1.358$ and $z=4.013$, which we use as constraints for the model. We find a foreground structure at $zsim0.4$, which we include as a second cluster-sized halo in one of our models; however two different statistical tests find the best-fit model consists of one cluster-sized halo combined with three individually optimized galaxy-sized halos, as well as contributions from the cluster galaxies themselves. We find the total projected mass density within $r=26.7$ (the region where the strong lensing constraints exist) to be $M=2.51^{+0.15}_{-0.09}times 10^{14}$~M$_{odot}$. If we extrapolate out to $r_{500}$, our projected mass density is consistent with the mass inferred from weak lensing and from the Sunyaev-Zeldovich effect ($Msim10^{15}$~M$_{odot}$). This cluster is lensing a previously reported $zsim10$ galaxy, which, if spectroscopically confirmed, will be the highest-redshift strongly lensed galaxy known.
Radio relics are sites of electron (re)acceleration in merging galaxy clusters but the mechanism of acceleration and the topology of the magnetic field in and near relics are yet to be understood. We are carrying out an observational campaign on double relic galaxy clusters starting with RXC J1314.4-2515. With $Jansky Very Large Array$ multi-configuration observations in the frequency range 1-4 GHz, we perform both spectral and polarization analyses, using the Rotation Measure synthesis technique. We use archival $XMM-Newton$ observations to constrain the properties of the shocked region. We discover a possible connection between the activity of a radio galaxy and the emission of the eastern radio relic. In the northern elongated arc of the western radio relic, we detect polarized emission with an average polarization fraction of $31 %$ at 3 GHz and we derive the Mach number of the underlying X-ray shock. Our observations reveal low levels of fractional polarization and Faraday-complex structures in the southern region of the relic, which point to the presence of thermal gas and filamentary magnetic field morphology inside the radio emitting volume. We measured largely different Rotation Measure dispersion from the two relics. Finally, we use cosmological magneto-hydrodynamical simulations to constrain the magnetic field, viewing angle, and to derive the acceleration efficiency of the shock. We find that the polarization properties of RXC J1314.4-2515 are consistent with a radio relic observed at $70^{circ}$ with respect to the line of sight and that efficient re-acceleration of fossil electrons has taken place.
We perform a comprehensive study of the total mass distribution of the galaxy cluster RXCJ2248 ($z=0.348$) with a set of high-precision strong lensing models, which take advantage of extensive spectroscopic information on many multiply lensed systems. In the effort to understand and quantify inherent systematics in parametric strong lensing modelling, we explore a collection of 22 models where we use different samples of multiple image families, parametrizations of the mass distribution and cosmological parameters. As input information for the strong lensing models, we use the CLASH HST imaging data and spectroscopic follow-up observations, carried out with the VIMOS and MUSE spectrographs, to identify bona-fide multiple images. A total of 16 background sources, over the redshift range $1.0-6.1$, are multiply lensed into 47 images, 24 of which are spectroscopically confirmed and belong to 10 individual sources. The cluster total mass distribution and underlying cosmology in the models are optimized by matching the observed positions of the multiple images on the lens plane. We show that with a careful selection of a sample of spectroscopically confirmed multiple images, the best-fit model reproduces their observed positions with a rms of $0.3$ in a fixed flat $Lambda$CDM cosmology, whereas the lack of spectroscopic information lead to biases in the values of the model parameters. Allowing cosmological parameters to vary together with the cluster parameters, we find (at $68%$ confidence level) $Omega_m=0.25^{+0.13}_{-0.16}$ and $w=-1.07^{+0.16}_{-0.42}$ for a flat $Lambda$CDM model, and $Omega_m=0.31^{+0.12}_{-0.13}$ and $Omega_Lambda=0.38^{+0.38}_{-0.27}$ for a universe with $w=-1$ and free curvature. Using toy models mimicking the overall configuration of RXCJ2248, we estimate the impact of the line of sight mass structure on the positional rms to be $0.3pm 0.1$.(ABRIDGED)
181 - Patrick L. Kelly 2014
In 1964, Refsdal hypothesized that a supernova whose light traversed multiple paths around a strong gravitational lens could be used to measure the rate of cosmic expansion. We report the discovery of such a system. In Hubble Space Telescope imaging, we have found four images of a single supernova forming an Einstein cross configuration around a redshift z=0.54 elliptical galaxy in the MACS J1149.6+2223 cluster. The clusters gravitational potential also creates multiple images of the z=1.49 spiral supernova host galaxy, and a future appearance of the supernova elsewhere in the cluster field is expected. The magnifications and staggered arrivals of the supernova images probe the cosmic expansion rate, as well as the distribution of matter in the galaxy and cluster lenses.
Cluster mergers leave distinct signatures in the ICM in the form of shocks and diffuse cluster radio sources that provide evidence for the acceleration of relativistic particles. However, the physics of particle acceleration in the ICM is still not fully understood. Here we present new 1-4 GHz Jansky Very Large Array (VLA) and archival Chandra observations of the HST Frontier Fields Cluster Abell 2744. In our new VLA images, we detect the previously known $sim2.1$ Mpc radio halo and $sim1.5$ Mpc radio relic. We carry out a radio spectral analysis from which we determine the relics injection spectral index to be $alpha_{rm{inj}} = -1.12 pm 0.19$. This corresponds to a shock Mach number of $mathcal{M}$ = 2.05$^{+0.31}_{-0.19}$ under the assumption of diffusive shock acceleration. We also find evidence for spectral steepening in the post-shock region. We do not find evidence for a significant correlation between the radio halos spectral index and ICM temperature. In addition, we observe three new polarized diffuse sources and determine two of these to be newly discovered giant radio relics. These two relics are located in the southeastern and northwestern outskirts of the cluster. The corresponding integrated spectral indices measure $-1.81 pm 0.26$ and $-0.63 pm 0.21$ for the SE and NW relics, respectively. From an X-ray surface brightness profile we also detect a possible density jump of $R=1.39^{+0.34}_{-0.22}$ co-located with the newly discovered SE relic. This density jump would correspond to a shock front Mach number of $mathcal{M}=1.26^{+0.25}_{-0.15}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا