Do you want to publish a course? Click here

PIC Simulation Methods for Cosmic Radiation and Plasma Instabilities

64   0   0.0 ( 0 )
 Added by Martin Pohl
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Particle acceleration in collisionless plasma systems is a central question in astroplasma and astroparticle physics. The structure of the acceleration regions, electron-ion energy equilibration, preacceleration of particles at shocks to permit further energization by diffusive shock acceleration, require knowledge of the distribution function of particles besides the structure and dynamic of electromagnetic fields, and hence a kinetic description is desirable. Particle-in-cell simulations offer an appropriate, if computationally expensive method of essentially conducting numerical experiments that explore kinetic phenomena in collisionless plasma. We review recent results of PIC simulations of astrophysical plasma systems, particle acceleration, and the instabilities that shape them.

rate research

Read More

Hybrid-kinetic numerical simulations of firehose and mirror instabilities in a collisionless plasma are performed in which pressure anisotropy is driven as the magnetic field is changed by a persistent linear shear $S$. For a decreasing field, it is found that mostly oblique firehose fluctuations grow at ion Larmor scales and saturate with energies $sim$$S^{1/2}$; the pressure anisotropy is pinned at the stability threshold by particle scattering off microscale fluctuations. In contrast, nonlinear mirror fluctuations are large compared to the ion Larmor scale and grow secularly in time; marginality is maintained by an increasing population of resonant particles trapped in magnetic mirrors. After one shear time, saturated order-unity magnetic mirrors are formed and particles scatter off their sharp edges. Both instabilities drive sub-ion-Larmor--scale fluctuations, which appear to be kinetic-Alfv{e}n-wave turbulence. Our results impact theories of momentum and heat transport in astrophysical and space plasmas, in which the stretching of a magnetic field by shear is a generic process.
Latest study reports that plasma emission can be generated by energetic electrons of DGH distribution via the electron cyclotron maser instability (ECMI) in plasmas characterized by a large ratio of plasma oscillation frequency to electron gyro-frequency ($omega_{pe}/Omega_{ce}$). In this study, on the basis of the ECMI-plasma emission mechanism, we examine the double plasma resonance (DPR) effect and the corresponding plasma emission at both harmonic (H) and fundamental (F) bands using PIC simulations with various $omega_{pe}/Omega_{ce}$. This allows us to directly simulate the feature of zebra pattern (ZP) observed in solar radio bursts for the first time. We find that (1) the simulations reproduce the DPR effect nicely for the upper hybrid (UH) and Z modes, as seen from their variation of intensity and linear growth rate with $omega_{pe}/Omega_{ce}$, (2) the intensity of the H emission is stronger than that of the F emission by $sim$ 2 orders of magnitude and vary periodically with increasing $omega_{pe}/Omega_{ce}$, while the F emission is too weak to be significant, therefore we suggest that it is the H emission accounting for solar ZPs, (3) the peak-valley contrast of the total intensity of H is $sim 4$, and the peak lies around integer values of $omega_{pe}/Omega_{ce}$ (= 10 and 11) for the present parameter setup. We also evaluate the effect of energy of energetic electrons on the characteristics of ECMI-excited waves and plasma radiation. The study provides novel insight on the physical origin of ZPs of solar radio bursts.
We investigate electrostatic plasma instabilities of Farley-Buneman (FB) type driven by quasi-stationary neutral gas flows in the solar chromosphere. The role of these instabilities in the chromosphere is clarified. We find that the destabilizing ion thermal effect is highly reduced by the Coulomb collisions and can be ignored for the chromospheric FB-type instabilities. On the contrary, the destabilizing electron thermal effect is important and causes a significant reduction of the neutral drag velocity triggering the instability. The resulting threshold velocity is found as function of chromospheric height. Our results indicate that the FB type instabilities are still less efficient in the global chromospheric heating than the Joule dissipation of the currents driving these instabilities. This conclusion does not exclude the possibility that the FB type instabilities develop in the places where the cross-field currents overcome the threshold value and contribute to the heating locally. Typical length-scales of plasma density fluctuations produced by these instabilities are determined by the wavelengths of unstable modes, which are in the range $10-10^2$ cm in the lower chromosphere, and $10^2-10^3$ cm in the upper chromosphere. These results suggest that the decimetric radio waves undergoing scattering (scintillations) by these plasma irregularities can serve as a tool for remote probing of the solar chromosphere at different heights.
Heat flux suppression in collisionless plasmas for a large range of plasma $beta$ is explored using two-dimensional particle-in-cell simulations with a strong, sustained thermal gradient. We find that a transition takes place between whistler-dominated (high-$beta$) and double-layer-dominated (low-$beta$) heat flux suppression. Whistlers saturate at small amplitude in the low beta limit and are unable to effectively suppress the heat flux. Electrostatic double layers suppress the heat flux to a mostly constant factor of the free streaming value once this transition happens. The double layer physics is an example of ion-electron coupling and occurs on a scale of roughly the electron Debye length. The scaling of ion heating associated with the various heat flux driven instabilities is explored over the full range of $beta$ explored. The range of plasma-$beta$s studied in this work makes it relevant to the dynamics of a large variety of astrophysical plasmas, including the intracluster medium of galaxy clusters, hot accretion flows, stellar and accretion disk coronae, and the solar wind.
The growth of magneto-hydrodynamic fluctuations relevant to cosmic ray confinement in and near their sources, and the effects of local plasma conditions is revisited. We consider cases where cosmic rays penetrate a medium which may contain a fraction of neutral particles, and explore the possible effects of high-order cosmic-ray anisotropies. An algorithm for calculating the dispersion relation for arbitrary distributions, and anisotropies is presented, and a general solution for power-law cosmic-ray distributions is provided. Implications for the resulting instabilities near to strong Galactic cosmic-ray sources are discussed. We argue that cosmic-ray streaming in weakly ionised plasmas eliminates the need for the existence of an evanescent band in the dispersion relation, a conclusion which may be confirmed by gamma-ray observations. The necessity for additional multi-scale numerical simulations is highlighted, as understanding the non-linear behaviour is crucial.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا