No Arabic abstract
Observations of scattered light and thermal emission from hot Jupiter exoplanets have suggested the presence of inhomogeneous aerosols in their atmospheres. 3D general circulation models (GCMs) that attempt to model the effects of aerosols have been developed to understand the physical processes that underlie their dynamical structures. In this work, we investigate how different approaches to aerosol modeling in GCMs of hot Jupiters affect high-resolution thermal emission spectra throughout the duration of the planets orbit. Using results from a GCM with temperature-dependent cloud formation, we calculate spectra of a representative hot Jupiter with different assumptions regarding the vertical extent and thickness of clouds. We then compare these spectra to models in which clouds are absent or simply post-processed (i.e., added subsequently to the completed clear model). We show that the temperature-dependent treatment of clouds in the GCM produces high-resolution emission spectra that are markedly different from the clear and post-processed cases -- both in the continuum flux levels and line profiles -- and that increasing the vertical extent and thickness of clouds leads to bigger changes in these features. We evaluate the net Doppler shifts of the spectra induced by global winds and the planets rotation and show that they are strongly phase-dependent, especially for models with thicker and more extended clouds. This work further demonstrates the importance of radiative feedback in cloudy atmospheric models of hot Jupiters, as this can have a significant impact on interpreting spectroscopic observations of exoplanet atmospheres.
Deciphering the role of clouds is central to our understanding of exoplanet atmospheres, as they have a direct impact on the temperature and pressure structure, and observational properties of the planet. Super-hot Jupiters occupy a temperature regime similar to low mass M-dwarfs, where minimal cloud condensation is expected. However, observations of exoplanets such as WASP-12b (Teq ~ 2500 K) result in a transmission spectrum indicative of a cloudy atmosphere. We re-examine the temperature and pressure space occupied by these super-hot Jupiter atmospheres, to explore the role of the initial Al- and Ti-bearing condensates as the main source of cloud material. Due to the high temperatures a majority of the more common refractory material is not depleted into deeper layers and would remain in the vapor phase. The lack of depletion into deeper layers means that these materials with relatively low cloud masses can become significant absorbers in the upper atmosphere. We provide condensation curves for the initial Al- and Ti-bearing condensates that may be used to provide quantitative estimates of the effect of metallicity on cloud masses, as planets with metal-rich hosts potentially form more opaque clouds because more mass is available for condensation. Increased metallicity also pushes the point of condensation to hotter, deeper layers in the planetary atmosphere further increasing the density of the cloud. We suggest that planets around metal-rich hosts are more likely to have thick refractory clouds, and discuss the implication on the observed spectra of WASP-12b.
We compute models of the transmission spectra of planets HD 209458b, HD 189733b, and generic hot Jupiters. We examine the effects of temperature, surface gravity, and metallicity for the generic planets as a guide to understanding transmission spectra in general. We find that carbon dioxide absorption at 4.4 and 15 microns is prominent at high metallicity, and is a clear metallicity indicator. For HD 209458b and HD 189733b, we compute spectra for both one-dimensional and three-dimensional model atmospheres and examine the differences between them. The differences are usually small, but can be large if atmospheric temperatures are near important chemical abundance boundaries. The calculations for the 3D atmospheres, and their comparison with data, serve as constraints on these dynamical models that complement the secondary eclipse and light curve data sets. For HD 209458b, even if TiO and VO gases are abundant on the day side, their abundances can be considerably reduced on the cooler planetary limb. However, given the predicted limb temperatures and TiO abundances, the models optical opacity is too high. For HD 189733b we find a good match with some infrared data sets and constrain the altitude of a postulated haze layer. For this planet, substantial differences can exist between the transmission spectra of the leading and trailing hemispheres, which is an excellent probe of carbon chemistry. In thermochemical equilibrium, the cooler leading hemisphere is methane-dominated, and the hotter trailing hemisphere is CO-dominated, but these differences may be eliminated by non-equilibrium chemistry due to vertical mixing. It may be possible to constrain the carbon chemistry of this planet, and its spatial variation, with JWST.
The treatment of radiation transport in global circulation models (GCMs) is crucial to correctly describe Earth and exoplanet atmospheric dynamics processes. The two-stream approximation and correlated-k method are currently state-of-the-art approximations applied in both Earth and hot Jupiter GCM radiation schemes to facilitate rapid calculation of fluxes and heating rates. Their accuracy have been tested extensively for Earth-like conditions, but verification of the methods applicability to hot Jupiter-like conditions is lacking in the literature. We are adapting the UK Met Office GCM, the Unified Model (UM), for the study of hot Jupiters, and present in this work the adaptation of the Edwards-Slingo radiation scheme based on the two-stream approximation and the correlated-k method. We discuss the calculation of absorption coefficients from high temperature line lists and highlight the large uncertainty in the pressure-broadened line widths. We compare fluxes and heating rates obtained with our adapted scheme to more accurate discrete ordinate (DO) line-by-line (LbL) calculations ignoring scattering effects. We find that, in most cases, errors stay below 10 % for both heating rates and fluxes using ~ 10 k-coefficients in each band and a diffusivity factor D = 1.66. The two-stream approximation and the correlated-k method both contribute non-negligibly to the total error. We also find that using band-averaged absorption coefficients, which have previously been used in radiative-hydrodynamical simulations of a hot Jupiter, may yield errors of ~ 100 %, and should thus be used with caution.
Radiative transfer in planetary atmospheres is usually treated in the static limit, i.e., neglecting atmospheric motions. We argue that hot Jupiter atmospheres, with possibly fast (sonic) wind speeds, may require a more strongly coupled treatment, formally in the regime of radiation-hydrodynamics. To lowest order in v/c, relativistic Doppler shifts distort line profiles along optical paths with finite wind velocity gradients. This leads to flow-dependent deviations in the effective emission and absorption properties of the atmospheric medium. Evaluating the overall impact of these distortions on the radiative structure of a dynamic atmosphere is non-trivial. We present transmissivity and systematic equivalent width excess calculations which suggest possibly important consequences for radiation transport in hot Jupiter atmospheres. If winds are fast and bulk Doppler shifts are indeed important for the global radiative balance, accurate modeling and reliable data interpretation for hot Jupiter atmospheres may prove challenging: it would involve anisotropic and dynamic radiative transfer in a coupled radiation-hydrodynamical flow. On the bright side, it would also imply that the emergent properties of hot Jupiter atmospheres are more direct tracers of their atmospheric flows than is the case for Solar System planets. Radiation-hydrodynamics may also influence radiative transfer in other classes of hot exoplanetary atmospheres with fast winds.