No Arabic abstract
We present sensitive 850$mu$m imaging of the COSMOS field using 640hr of new and archival observations taken with SCUBA-2 at the East Asian Observatorys James Clerk Maxwell Telescope. The SCUBA-2 COSMOS survey (S2COSMOS) achieves a median noise level of $sigma_{850mu{mathrm{m}}}$=1.2mJy/beam over an area of 1.6 sq. degree (MAIN; HST/ACS footprint), and $sigma_{850mu{mathrm{m}}}$=1.7mJy/beam over an additional 1 sq. degree of supplementary (SUPP) coverage. We present a catalogue of 1020 and 127 sources detected at a significance level of >4$sigma$ and >4.3$sigma$ in the MAIN and SUPP regions, respectively, corresponding to a uniform 2% false-detection rate. We construct the single-dish 850$mu$m number counts at $S_{850}$>2mJy and show that these S2COSMOS counts are in agreement with previous single-dish surveys, demonstrating that degree-scale fields are sufficient to overcome the effects of cosmic variance in the $S_{850}$=2-10mJy population. To investigate the properties of the galaxies identified by S2COSMOS sources we measure the surface density of near-infrared-selected galaxies around their positions and identify an average excess of 2.0$pm$0.2 galaxies within a 13$$ radius (~100kpc at $z$~2). The bulk of these galaxies represent near-infrared-selected SMGs and/or spatially-correlated sources and lie at a median photometric redshift of $z$=2.0$pm$0.1. Finally, we perform a stacking analysis at sub-millimeter and far-infrared wavelengths of stellar-mass-selected galaxies ($M_{star}$=10$^{10}$-10$^{12}{rm M_{odot}}$) from $z$=0-4, obtaining high-significance detections at 850um in all subsets (SNR=4-30), and investigate the relation between far-infrared luminosity, stellar mass, and the peak wavelength of the dust SED. The publication of this survey adds a new deep, uniform sub-millimeter layer to the wavelength coverage of this well-studied COSMOS field.
We present an ALMA study of the ~180 brightest sources in the SCUBA-2 map of the COSMOS field from the S2COSMOS survey, as a pilot study for AS2COSMOS - a full survey of the ~1,000 sources in this field. In this pilot we have obtained 870-um continuum maps of an essentially complete sample of the brightest 182 sub-millimetre sources (S_850um=6.2mJy) in COSMOS. Our ALMA maps detect 260 sub-millimetre galaxies (SMGs) spanning a range in flux density of S_870um=0.7-19.2mJy. We detect more than one SMG counterpart in 34+/-2 per cent of sub-millimetre sources, increasing to 53+/-8 per cent for SCUBA-2 sources brighter than S_850um>12mJy. We estimate that approximately one-third of these SMG-SMG pairs are physically associated (with a higher rate for the brighter secondary SMGs, S_870um>3mJy), and illustrate this with the serendipitous detection of bright [CII] 157.74um line emission in two SMGs, AS2COS0001.1 & 0001.2 at z=4.63, associated with the highest significance single-dish source. Using our source catalogue we construct the interferometric 870um number counts at S_870um>6.2mJy. We use the extensive archival data of this field to construct the multiwavelength spectral energy distribution of each AS2COSMOS SMG, and subsequently model this emission with MAGPHYS to estimate their photometric redshifts. We find a median photometric redshift for the S_870um>6.2mJy AS2COSMOS sample of z=2.87+/-0.08, and clear evidence for an increase in the median redshift with 870-um flux density suggesting strong evolution in the bright-end of the 870um luminosity function.
We present high-resolution 870-um ALMA continuum maps of 30 bright sub-millimeter sources in the UKIDSS UDS field. These sources are selected from deep, 1-square degrees 850-um maps from the SCUBA--2 Cosmology Legacy Survey, and are representative of the brightest sources in the field (median SCUBA2 flux S_850=8.7+/-0.4 mJy). We detect 52 sub-millimeter galaxies (SMGs) at >4-sigma significance in our 30 ALMA maps. In 61+/-17% of the ALMA maps the single-dish source comprises a blend of >=2 SMGs, where the secondary SMGs are Ultra--Luminous Infrared Galaxies (ULIRGs) with L_IR>10^12 Lo. The brightest SMG contributes on average 80+/-4% of the single-dish flux density, and in the ALMA maps containing >=2 SMGs the secondary SMG contributes 25+/-3% of the integrated ALMA flux. We construct source counts and show that multiplicity boosts the apparent single-dish cumulative counts by 20% at S_870>7.5mJy, and by 60% at S_870>12mJy. We combine our sample with previous ALMA studies of fainter SMGs and show that the counts are well-described by a double power-law with a break at 8.5+/-0.6mJy. The break corresponds to a luminosity of ~6x10^12Lsol or a star-formation rate of ~1000Mo/yr. For the typical sizes of these SMGs, which are resolved in our ALMA data with r=1.2+/-0.1kpc, this yields a limiting SFR density of ~100Msol/yr/kpc2. Finally, the number density of S_870>2mJy SMGs is 80+/-30 times higher than that derived from blank-field counts. An over-abundance of faint SMGs is inconsistent with line-of-sight projections dominating multiplicity in the brightest SMGs, and indicates that a significant proportion of these high-redshift ULIRGs must be physically associated.
We have used the Submillimeter Array at 860$,mu$m to observe the brightest SCUBA-2 sources in 4$,$deg$^{2}$ of the Cosmology Legacy Survey. We have targeted 75 of the brightest single-dish SCUBA-2 850$,mu$m sources down to $S_{850},{approx},8,$mJy, achieving an average synthesized beam of 2.4$^{primeprime}$ and an average rms of $sigma_{860},{=},1.5,$mJy in our primary beam-corrected maps. We searched our maps for $4sigma$ peaks, corresponding to $S_{860},{gtrsim},6,$mJy sources, and detected 59 single galaxies and three pairs of galaxies. We include in our study 28 archival observations, bringing our sample size to 103 bright single-dish submillimetre sources with interferometric follow-up. We compute the cumulative and differential number counts of our sample, finding them to overlap with previous single-dish survey number counts within the uncertainties, although our cumulative number count is systematically lower than the parent SCUBA-2 cumulative number count by $24,{pm},6$ per cent between 11 and 15$,$mJy. We estimate the probability that a ${gtrsim},10,$mJy single-dish submillimetre source resolves into two or more galaxies with similar flux densities, causing a significant change in the number counts, to be about 15 per cent. Assuming the remaining 85 per cent of the targets are ultra-luminous starburst galaxies between $z,{=},2$-3, we find a likely volume density of ${gtrsim},400,$M$_{odot},$yr$^{-1}$ sources to be ${sim},3^{+0.7}_{-0.6},{times},10^{-7},$Mpc$^{-3}$. We show that the descendants of these galaxies could be ${gtrsim},4,{times},10^{11},$M$_{odot}$ local quiescent galaxies, and that about 10 per cent of their total stellar mass would have formed during these short bursts of star-formation.
We present high-resolution (0.3) ALMA 870um imaging of 52 sub-millimeter galaxies (SMGs) in the Ultra Deep Survey (UDS) field and investigate the size and morphology of the sub-millimeter (sub-mm) emission on 2-10kpc scales. We derive a median intrinsic angular size of FWHM=0.30$pm$0.04 for the 23 SMGs in the sample detected at a signal-to-noise ratio (SNR) >10. Using the photometric redshifts of the SMGs we show that this corresponds to a median physical half-light diameter of 2.4$pm$0.2kpc. A stacking analysis of the SMGs detected at an SNR <10 shows they have sizes consistent with the 870um-bright SMGs in the sample. We compare our results to the sizes of SMGs derived from other multi-wavelength studies, and show that the rest-frame ~250um sizes of SMGs are consistent with studies of resolved 12CO (J=3-2 to 7-6) emission lines, but that sizes derived from 1.4GHz imaging appear to be approximately two times larger on average, which we attribute to cosmic ray diffusion. The rest-frame optical sizes of SMGs are around four times larger than the sub-millimeter sizes, indicating that the star formation in these galaxies is compact relative to the pre-existing stellar distribution. The size of the starburst region in SMGs is consistent with the majority of the star formation occurring in a central region, a few kpc in extent, with a median star formation rate surface density of 90$pm$30Msol/yr/kpc$^2$, which may suggest that we are witnessing an intense period of bulge growth in these galaxies.
We present the Herschel Bright Sources (HerBS) sample, a sample of bright, high-redshift Herschel sources detected in the 616.4 square degree H-ATLAS survey. The HerBS sample contains 209 galaxies, selected with a 500 {mu}m flux density greater than 80 mJy and an estimated redshift greater than 2. The sample consists of a combination of HyLIRGs and lensed ULIRGs during the epoch of peak cosmic star formation. In this paper, we present SCUBA-2 observations at 850 ${mu}$m of 189 galaxies of the HerBS sample, 152 of these sources were detected. We fit a spectral template to the Herschel-SPIRE and 850 ${mu}$m SCUBA-2 flux densities of 22 sources with spectroscopically determined redshifts, using a two-component modified blackbody spectrum as a template. We find a cold- and hot-dust temperature of 21.29 K and 45.80 K, a cold-to-hot dust mass ratio of 26.62 and a $beta$ of 1.83. The poor quality of the fit suggests that the sample of galaxies is too diverse to be explained by our simple model. Comparison of our sample to a galaxy evolution model indicates that the fraction of lenses is high. Out of the 152 SCUBA-2 detected galaxies, the model predicts 128.4 $pm$ 2.1 of those galaxies to be lensed (84.5%). The SPIRE 500 ${mu}$m flux suggests that out of all 209 HerBS sources, we expect 158.1 $pm$ 1.7 lensed sources, giving a total lensing fraction of 76 per cent.