Do you want to publish a course? Click here

The SCUBA-2 Cosmology Legacy Survey: ALMA resolves the bright-end of the sub-millimeter number counts

305   0   0.0 ( 0 )
 Added by Mark Swinbank Dr.
 Publication date 2015
  fields Physics
and research's language is English
 Authors James Simpson




Ask ChatGPT about the research

We present high-resolution 870-um ALMA continuum maps of 30 bright sub-millimeter sources in the UKIDSS UDS field. These sources are selected from deep, 1-square degrees 850-um maps from the SCUBA--2 Cosmology Legacy Survey, and are representative of the brightest sources in the field (median SCUBA2 flux S_850=8.7+/-0.4 mJy). We detect 52 sub-millimeter galaxies (SMGs) at >4-sigma significance in our 30 ALMA maps. In 61+/-17% of the ALMA maps the single-dish source comprises a blend of >=2 SMGs, where the secondary SMGs are Ultra--Luminous Infrared Galaxies (ULIRGs) with L_IR>10^12 Lo. The brightest SMG contributes on average 80+/-4% of the single-dish flux density, and in the ALMA maps containing >=2 SMGs the secondary SMG contributes 25+/-3% of the integrated ALMA flux. We construct source counts and show that multiplicity boosts the apparent single-dish cumulative counts by 20% at S_870>7.5mJy, and by 60% at S_870>12mJy. We combine our sample with previous ALMA studies of fainter SMGs and show that the counts are well-described by a double power-law with a break at 8.5+/-0.6mJy. The break corresponds to a luminosity of ~6x10^12Lsol or a star-formation rate of ~1000Mo/yr. For the typical sizes of these SMGs, which are resolved in our ALMA data with r=1.2+/-0.1kpc, this yields a limiting SFR density of ~100Msol/yr/kpc2. Finally, the number density of S_870>2mJy SMGs is 80+/-30 times higher than that derived from blank-field counts. An over-abundance of faint SMGs is inconsistent with line-of-sight projections dominating multiplicity in the brightest SMGs, and indicates that a significant proportion of these high-redshift ULIRGs must be physically associated.



rate research

Read More

123 - J. M. Simpson 2014
We present high-resolution (0.3) ALMA 870um imaging of 52 sub-millimeter galaxies (SMGs) in the Ultra Deep Survey (UDS) field and investigate the size and morphology of the sub-millimeter (sub-mm) emission on 2-10kpc scales. We derive a median intrinsic angular size of FWHM=0.30$pm$0.04 for the 23 SMGs in the sample detected at a signal-to-noise ratio (SNR) >10. Using the photometric redshifts of the SMGs we show that this corresponds to a median physical half-light diameter of 2.4$pm$0.2kpc. A stacking analysis of the SMGs detected at an SNR <10 shows they have sizes consistent with the 870um-bright SMGs in the sample. We compare our results to the sizes of SMGs derived from other multi-wavelength studies, and show that the rest-frame ~250um sizes of SMGs are consistent with studies of resolved 12CO (J=3-2 to 7-6) emission lines, but that sizes derived from 1.4GHz imaging appear to be approximately two times larger on average, which we attribute to cosmic ray diffusion. The rest-frame optical sizes of SMGs are around four times larger than the sub-millimeter sizes, indicating that the star formation in these galaxies is compact relative to the pre-existing stellar distribution. The size of the starburst region in SMGs is consistent with the majority of the star formation occurring in a central region, a few kpc in extent, with a median star formation rate surface density of 90$pm$30Msol/yr/kpc$^2$, which may suggest that we are witnessing an intense period of bulge growth in these galaxies.
We present a catalogue of nearly 3,000 submillimetre sources detected at 850um over ~5 square degrees surveyed as part of the James Clerk Maxwell Telescope (JCMT) SCUBA-2 Cosmology Legacy Survey (S2CLS). This is the largest survey of its kind at 850um, probing a meaningful cosmic volume at the peak of star formation activity and increasing the sample size of submillimetre galaxies selected at 850um by an order of magnitude. We describe the wide 850um survey component of S2CLS, which covers the key extragalactic survey fields: UKIDSS-UDS, COSMOS, Akari-NEP, Extended Groth Strip, Lockman Hole North, SSA22 and GOODS-North. The average 1-sigma depth of S2CLS is 1.2 mJy/beam, approaching the SCUBA-2 850um confusion limit, which we determine to be ~0.8 mJy/beam. We measure the single dish 850um number counts to unprecedented accuracy, reducing the Poisson errors on the differential counts to approximately 4% at S_850~3mJy. With several independent fields, we investigate field-to-field variance, finding that the number counts on 0.5-1 degree scales are generally within 50% of the S2CLS mean for S_850>3mJy, with scatter consistent with the Poisson and estimated cosmic variance uncertainties, although there is a marginal (2-sigma) density enhancement in the GOODS-North field. The observed number counts are in reasonable agreement with recent phenomenological and semi-analytic models. Finally, the large solid angle of S2CLS allows us to measure the bright-end counts: at S_850>10mJy there are approximately ten sources per square degree, and we detect the distinctive up-turn in the number counts indicative of the detection of local sources of 850um emission and strongly lensed high-redshift galaxies. Here we describe the data collection and reduction procedures and present calibrated maps and a catalogue of sources; these are made publicly available.
113 - S. M. Stach 2018
We report the first results of AS2UDS: an 870 $mu$m continuum survey with the Atacama Large Millimeter/Submillimeter Array (ALMA) of a total area of $sim$ 50 arcmin$^2$ comprising a complete sample of 716 submillimeter sources drawn from the SCUBA-2 Cosmology Legacy Survey (S2CLS) map of the UKIDSS/UDS field. The S2CLS parent sample covers a 0.96 degree$^2$ field at $sigma_{850}=0.90pm0.05$ mJy beam$^{-1}$. Our deep, high-resolution ALMA observations with $sigma_{rm 870}sim$ 0.25 mJy and a 0.15--0.30 FWHM synthesized beam, provide precise locations for 695 submillimetre galaxies (SMGs) responsible for the submillimeter emission corresponding to 606 sources in the low resolution, single-dish map. We measure the number counts of SMGs brighter than $S_{rm 870}geq$ 4 mJy, free from the effects of blending and show that the normalisation of the counts falls by 28 $pm$ 2% in comparison to the SCUBA-2 parent sample, but that the shape remains unchanged. We determine that 44$^{+16}_{-14}$% of the brighter single-dish sources with $S_{850}geq$ 9 mJy consist of a blend of two or more ALMA-detectable SMGs brighter than $S_{870}sim$ 1 mJy (corresponding to a galaxy with a total-infrared luminosity of $L_{IR}geq$ 10$^{12}$ L$_odot$), in comparison to 28 $pm$ 2% for the single-dish sources at $S_{rm 850}geq$ 5 mJy. Using the 46 single-dish submillimeter sources that contain two or more ALMA-detected SMGs with photometric redshifts, we show that there is a significant statistical excess of pairs of SMGs with similar redshifts ($<$1% probability of occurring by chance), suggesting that at least 30% of these blends arise from physically associated pairs of SMGs.
108 - E. A. Cooke 2018
We report the results of a search for serendipitous [CII] 157.74$mu$m emitters at $zsim4.4$-$4.7$ using the Atacama Large Millimeter/submillimeter Array (ALMA). The search exploits the AS2UDS continuum survey, which covers ~50 arcmin$^2$ of the sky towards 695 luminous ($S_{870}gtrsim1$mJy) submillimeter galaxies (SMGs), selected from the SCUBA-2 Cosmology Legacy Survey (S2CLS) 0.96deg$^2$ Ultra Deep Survey (UDS) field. We detect ten candidate line emitters, with an expected false detection rate of ten percent. All of these line emitters correspond to 870$mu$m continuum-detected sources in AS2UDS. The emission lines in two emitters appear to be high-J CO, but the remainder have multi-wavelength properties consistent with [CII] from $zsimeq4.5$ galaxies. Using our sample, we place a lower limit of $>5times10^{-6}$Mpc$^{-3}$ on the space density of luminous ($L_{rm IR} simeq 10^{13}$Lsun) SMGs at $z=4.40$-$4.66$, suggesting $ge7$percent of SMGs with $S_{870mu{rm m}}gtrsim1$mJy lie at $4<z<5$. From stacking the high-resolution ($sim0.15$ full-width half maximum) ALMA $870mu$m imaging, we show that the [CII] line emission is more extended than the continuum dust emission, with an average effective radius for the [CII] of $r_{rm e} = 1.7^{+0.1}_{-0.2}$kpc compared to $r_{rm e} = 1.0pm0.1$kpc for the continuum (rest-frame $160mu$m). By fitting the far-infrared photometry for these galaxies from $100$-$870mu$m, we show that SMGs at $zsim4.5$ have a median dust temperature of $T_{rm d}=55pm4$K. This is systematically warmer than $870mu$m-selected SMGs at $zsimeq2$, which typically have temperatures around $35$K. These $zsimeq4.5$ SMGs display a steeper trend in the luminosity-temperature plane than $zle2$ SMGs. We discuss the implications of this result in terms of the selection biases of high redshift starbursts in far-infrared/submillimeter surveys.
81 - B. Gullberg 2019
We present an analysis of the morphology and profiles of the dust continuum emission in 153 bright sub-millimetre galaxies (SMGs) detected with ALMA at S/N ratios of $>8$ in high-resolution $0.18$ ($sim1$kpc) 870$mu$m maps. We measure sizes, shapes and light profiles for the rest-frame far-infrared emission from these luminous star-forming systems and derive a median effective radius ($R_e$) of $0.10pm0.04$ for our sample with a median flux of $S_{870}=5.6pm0.2$mJy. We find that the apparent axial ratio ($b/a$) distribution of the SMGs peaks at $b/asim0.63pm0.24$ and is best described by triaxial morphologies, while their emission profiles are best fit by a Sersic model with $nsimeq1.0pm0.1$, similar to exponential discs. This combination of triaxiality and $nsim1$ Sersic index are characteristic of bars and we suggest that the bulk of the 870$mu$m dust continuum emission in the central $sim2$kpc of these galaxies arises from bar-like structures. By stacking our 870$mu$m maps we recover faint extended dust continuum emission on $sim4$kpc scales which contributes $13pm1$% of the total 870$mu$m emission. The scale of this extended emission is similar to that seen for the molecular gas and rest-frame optical light in these systems, suggesting that it represents an extended dust and gas disc at radii larger than the more active bar component. Including this component in our estimated size of the sources we derive a typical effective radius of $simeq0.15pm0.05$ or $1.2pm0.4$kpc. Our results suggest that kpc-scale bars are ubiquitous features of high star-formation rate systems at $zgg1$, while these systems also contain fainter and more extended gas and stellar envelopes. We suggest that these features, seen some $10-12$Gyrs ago, represent the formation phase of the earliest galactic-scale components: stellar bulges.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا