No Arabic abstract
We derive and solve renormalization group equations that allow for the resummation of subleading power rapidity logarithms. Our equations involve operator mixing into a new class of operators, which we term the rapidity identity operators, that will generically appear at subleading power in problems involving both rapidity and virtuality scales. To illustrate our formalism, we analytically solve these equations to resum the power suppressed logarithms appearing in the back-to-back (double light cone) limit of the Energy-Energy Correlator (EEC) in $mathcal{N}$=4 super-Yang-Mills. These logarithms can also be extracted to $mathcal{O}(alpha_s^3)$ from a recent perturbative calculation, and we find perfect agreement to this order. Instead of the standard Sudakov exponential, our resummed result for the subleading power logarithms is expressed in terms of Dawsons integral, with an argument related to the cusp anomalous dimension. We call this functional form Dawsons Sudakov. Our formalism is widely applicable for the resummation of subleading power rapidity logarithms in other more phenomenologically relevant observables, such as the EEC in QCD, the $p_T$ spectrum for color singlet boson production at hadron colliders, and the resummation of power suppressed logarithms in the Regge limit.
We present a novel expression for an integrated correlation function of four superconformal primaries in $SU(N)$ $mathcal{N}=4$ SYM. This integrated correlator, which is based on supersymmetric localisation, has been the subject of several recent developments. The correlator is re-expressed as a sum over a two dimensional lattice that is valid for all $N$ and all values of the complex Yang-Mills coupling $tau$. In this form it is manifestly invariant under $SL(2,mathbb{Z})$ Montonen-Olive duality. Furthermore, it satisfies a remarkable Laplace-difference equation that relates the $SU(N)$ to the $SU(N+1)$ and $SU(N-1)$ correlators. For any fixed value of $N$ the correlator is an infinite series of non-holomorphic Eisenstein series, $E(s;tau,bartau)$ with $sin mathbb{Z}$, and rational coefficients. The perturbative expansion of the integrated correlator is asymptotic and the $n$-loop coefficient is a rational multiple of $zeta(2n+1)$. The $n=1$ and $n=2$ terms agree precisely with results determined directly by integrating the expressions in one- and two-loop perturbative SYM. Likewise, the charge-$k$ instanton contributions have an asymptotic, but Borel summable, series of perturbative corrections. The large-$N$ expansion of the correlator with fixed $tau$ is a series in powers of $N^{1/2-ell}$ ($ellin mathbb{Z}$) with coefficients that are rational sums of $E_s$ with $sin mathbb{Z}+1/2$. This gives an all orders derivation of the form of the recently conjectured expansion. We further consider t Hooft large-$N$ Yang-Mills theory. The coefficient of each order can be expanded as a convergent series in $lambda$. For large $lambda$ this becomes an asymptotic series with coefficients that are again rational multiples of odd zeta values. The large-$lambda$ series is not Borel summable, and its resurgent non-perturbative completion is $O(exp(-2sqrt{lambda}))$.
An integrated correlator of four superconformal stress-tensor primaries of $mathcal{N}=4$ supersymmetric $SU(N)$ Yang-Mills theory (SYM), originally obtained by localisation, is re-expressed as a two-dimensional lattice sum that is manifestly invariant under $SL(2,mathbb{Z})$ S-duality. This expression is shown to satisfy a novel Laplace equation in the complex coupling constant $tau$ that relates the $SU(N)$ integrated correlator to those of the $SU(N+1)$ and $SU(N-1)$ theories. The lattice sum is shown to precisely reproduce known perturbative and non-perturbative properties of $mathcal{N}=4$ SYM for any finite $N$, as well as extending previously conjectured properties of the large-$N$ expansion.
We compute O(g) NLO corrections to the transverse scattering kernel and transverse momentum broadening coefficient $hat{q}$ of weakly-coupled $mathcal{N}=4$ SYM. Based on this, we also compute NLO correction to the collinear splitting rates. For $hat{q}$ we find that the NLO/LO ratio is similar to the QCD one, with large NLO corrections. This is contrasted by our findings for the collinear splitting rate, which show a much better convergence in SYM than in QCD, providing further support to earlier expectations that NLO corrections have signs and relative magnitudes controlled by the specifics of the theory. We also compare the ratio of $hat{q}$ in QCD and in $mathcal{N}=4$ theory to strong coupling expectations.
A number of important observables exhibit logarithms in their perturbative description that are induced by emissions at widely separated rapidities. These include transverse-momentum ($q_T$) logarithms, logarithms involving heavy-quark or electroweak gauge boson masses, and small-$x$ logarithms. In this paper, we initiate the study of rapidity logarithms, and the associated rapidity divergences, at subleading order in the power expansion. This is accomplished using the soft collinear effective theory (SCET). We discuss the structure of subleading-power rapidity divergences and how to consistently regulate them. We introduce a new pure rapidity regulator and a corresponding $overline{rm MS}$-like scheme, which handles rapidity divergences while maintaining the homogeneity of the power expansion. We find that power-law rapidity divergences appear at subleading power, which give rise to derivatives of parton distribution functions. As a concrete example, we consider the $q_T$ spectrum for color-singlet production, for which we compute the complete $q_T^2/Q^2$ suppressed power corrections at $mathcal{O}(alpha_s)$, including both logarithmic and nonlogarithmic terms. Our results also represent an important first step towards carrying out a resummation of subleading-power rapidity logarithms.
Jet cross sections at high-energy colliders exhibit intricate patterns of logarithmically enhanced higher-order corrections. In particular, so-called non-global logarithms emerge from soft radiation emitted off energetic partons inside jets. While this is a single-logarithmic effect at lepton colliders, at hadron colliders phase factors in the amplitudes lead to double-logarithmic corrections starting at four-loop order. This effect was discovered a long time ago, but not much is known about the higher-order behavior of these terms and their process dependence. We derive, for the first time, the all-order structure of these super-leading logarithms for generic $2to l$ scattering processes at hadron colliders and resum them in closed form.