Do you want to publish a course? Click here

Towards Robust Image Classification Using Sequential Attention Models

79   0   0.0 ( 0 )
 Added by Daniel Zoran
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In this paper we propose to augment a modern neural-network architecture with an attention model inspired by human perception. Specifically, we adversarially train and analyze a neural model incorporating a human inspired, visual attention component that is guided by a recurrent top-down sequential process. Our experimental evaluation uncovers several notable findings about the robustness and behavior of this new model. First, introducing attention to the model significantly improves adversarial robustness resulting in state-of-the-art ImageNet accuracies under a wide range of random targeted attack strengths. Second, we show that by varying the number of attention steps (glances/fixations) for which the model is unrolled, we are able to make its defense capabilities stronger, even in light of stronger attacks --- resulting in a computational race between the attacker and the defender. Finally, we show that some of the adversarial examples generated by attacking our model are quite different from conventional adversarial examples --- they contain global, salient and spatially coherent structures coming from the target class that would be recognizable even to a human, and work by distracting the attention of the model away from the main object in the original image.



rate research

Read More

Adversarial attacks against deep learning models have gained significant attention and recent works have proposed explanations for the existence of adversarial examples and techniques to defend the models against these attacks. Attention in computer vision has been used to incorporate focused learning of important features and has led to improved accuracy. Recently, models with attention mechanisms have been proposed to enhance adversarial robustness. Following this context, this work aims at a general understanding of the impact of attention on adversarial robustness. This work presents a comparative study of adversarial robustness of non-attention and attention based image classification models trained on CIFAR-10, CIFAR-100 and Fashion MNIST datasets under the popular white box and black box attacks. The experimental results show that the robustness of attention based models may be dependent on the datasets used i.e. the number of classes involved in the classification. In contrast to the datasets with less number of classes, attention based models are observed to show better robustness towards classification.
In recent years, the security concerns about the vulnerability of Deep Convolutional Neural Networks (DCNN) to Adversarial Attacks (AA) in the form of small modifications to the input image almost invisible to human vision make their predictions untrustworthy. Therefore, it is necessary to provide robustness to adversarial examples in addition to an accurate score when developing a new classifier. In this work, we perform a comparative study of the effects of AA on the complex problem of art media categorization, which involves a sophisticated analysis of features to classify a fine collection of artworks. We tested a prevailing bag of visual words approach from computer vision, four state-of-the-art DCNN models (AlexNet, VGG, ResNet, ResNet101), and the Brain Programming (BP) algorithm. In this study, we analyze the algorithms performance using accuracy. Besides, we use the accuracy ratio between adversarial examples and clean images to measure robustness. Moreover, we propose a statistical analysis of each classifiers predictions confidence to corroborate the results. We confirm that BP predictions change was below 2% using adversarial examples computed with the fast gradient sign method. Also, considering the multiple pixel attack, BP obtained four out of seven classes without changes and the rest with a maximum error of 4% in the predictions. Finally, BP also gets four categories using adversarial patches without changes and for the remaining three classes with a variation of 1%. Additionally, the statistical analysis showed that the predictions confidence of BP were not significantly different for each pair of clean and perturbed images in every experiment. These results prove BPs robustness against adversarial examples compared to DCNN and handcrafted features methods, whose performance on the art media classification was compromised with the proposed perturbations.
Current deep learning paradigms largely benefit from the tremendous amount of annotated data. However, the quality of the annotations often varies among labelers. Multi-observer studies have been conducted to study these annotation variances (by labeling the same data for multiple times) and its effects on critical applications like medical image analysis. This process indeed adds an extra burden to the already tedious annotation work that usually requires professional training and expertise in the specific domains. On the other hand, automated annotation methods based on NLP algorithms have recently shown promise as a reasonable alternative, relying on the existing diagnostic reports of those images that are widely available in the clinical system. Compared to human labelers, different algorithms provide labels with varying qualities that are even noisier. In this paper, we show how noisy annotations (e.g., from different algorithm-based labelers) can be utilized together and mutually benefit the learning of classification tasks. Specifically, the concept of attention-on-label is introduced to sample better label sets on-the-fly as the training data. A meta-training based label-sampling module is designed to attend the labels that benefit the model learning the most through additional back-propagation processes. We apply the attention-on-label scheme on the classification task of a synthetic noisy CIFAR-10 dataset to prove the concept, and then demonstrate superior results (3-5% increase on average in multiple disease classification AUCs) on the chest x-ray images from a hospital-scale dataset (MIMIC-CXR) and hand-labeled dataset (OpenI) in comparison to regular training paradigms.
Deep Convolutional Neural Network (DCNN) and Transformer have achieved remarkable successes in image recognition. However, their performance in fine-grained image recognition is still difficult to meet the requirements of actual needs. This paper proposes a Sequence Random Network (SRN) to enhance the performance of DCNN. The output of DCNN is one-dimensional features. This one-dimensional feature abstractly represents image information, but it does not express well the detailed information of image. To address this issue, we use the proposed SRN which composed of BiLSTM and several Tanh-Dropout blocks (called BiLSTM-TDN), to further process DCNN one-dimensional features for highlighting the detail information of image. After the feature transform by BiLSTM-TDN, the recognition performance has been greatly improved. We conducted the experiments on six fine-grained image datasets. Except for FGVC-Aircraft, the accuracies of the proposed methods on the other datasets exceeded 99%. Experimental results show that BiLSTM-TDN is far superior to the existing state-of-the-art methods. In addition to DCNN, BiLSTM-TDN can also be extended to other models, such as Transformer.
Images shared on social media help crisis managers gain situational awareness and assess incurred damages, among other response tasks. As the volume and velocity of such content are typically high, real-time image classification has become an urgent need for a faster disaster response. Recent advances in computer vision and deep neural networks have enabled the development of models for real-time image classification for a number of tasks, including detecting crisis incidents, filtering irrelevant images, classifying images into specific humanitarian categories, and assessing the severity of the damage. To develop robust real-time models, it is necessary to understand the capability of the publicly available pre-trained models for these tasks, which remains to be under-explored in the crisis informatics literature. In this study, we address such limitations by investigating ten different network architectures for four different tasks using the largest publicly available datasets for these tasks. We also explore various data augmentation strategies, semi-supervised techniques, and a multitask learning setup. In our extensive experiments, we achieve promising results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا