No Arabic abstract
Deep Convolutional Neural Network (DCNN) and Transformer have achieved remarkable successes in image recognition. However, their performance in fine-grained image recognition is still difficult to meet the requirements of actual needs. This paper proposes a Sequence Random Network (SRN) to enhance the performance of DCNN. The output of DCNN is one-dimensional features. This one-dimensional feature abstractly represents image information, but it does not express well the detailed information of image. To address this issue, we use the proposed SRN which composed of BiLSTM and several Tanh-Dropout blocks (called BiLSTM-TDN), to further process DCNN one-dimensional features for highlighting the detail information of image. After the feature transform by BiLSTM-TDN, the recognition performance has been greatly improved. We conducted the experiments on six fine-grained image datasets. Except for FGVC-Aircraft, the accuracies of the proposed methods on the other datasets exceeded 99%. Experimental results show that BiLSTM-TDN is far superior to the existing state-of-the-art methods. In addition to DCNN, BiLSTM-TDN can also be extended to other models, such as Transformer.
Few-shot learning for fine-grained image classification has gained recent attention in computer vision. Among the approaches for few-shot learning, due to the simplicity and effectiveness, metric-based methods are favorably state-of-the-art on many tasks. Most of the metric-based methods assume a single similarity measure and thus obtain a single feature space. However, if samples can simultaneously be well classified via two distinct similarity measures, the samples within a class can distribute more compactly in a smaller feature space, producing more discriminative feature maps. Motivated by this, we propose a so-called textit{Bi-Similarity Network} (textit{BSNet}) that consists of a single embedding module and a bi-similarity module of two similarity measures. After the support images and the query images pass through the convolution-based embedding module, the bi-similarity module learns feature maps according to two similarity measures of diverse characteristics. In this way, the model is enabled to learn more discriminative and less similarity-biased features from few shots of fine-grained images, such that the model generalization ability can be significantly improved. Through extensive experiments by slightly modifying established metric/similarity based networks, we show that the proposed approach produces a substantial improvement on several fine-grained image benchmark datasets. Codes are available at: https://github.com/spraise/BSNet
Fine-grained image classification is to recognize hundreds of subcategories belonging to the same basic-level category, such as 200 subcategories belonging to the bird, which is highly challenging due to large variance in the same subcategory and small variance among different subcategories. Existing methods generally first locate the objects or parts and then discriminate which subcategory the image belongs to. However, they mainly have two limitations: (1) Relying on object or part annotations which are heavily labor consuming. (2) Ignoring the spatial relationships between the object and its parts as well as among these parts, both of which are significantly helpful for finding discriminative parts. Therefore, this paper proposes the object-part attention model (OPAM) for weakly supervised fine-grained image classification, and the main novelties are: (1) Object-part attention model integrates two level attentions: object-level attention localizes objects of images, and part-level attention selects discriminative parts of object. Both are jointly employed to learn multi-view and multi-scale features to enhance their mutual promotions. (2) Object-part spatial constraint model combines two spatial constraints: object spatial constraint ensures selected parts highly representative, and part spatial constraint eliminates redundancy and enhances discrimination of selected parts. Both are jointly employed to exploit the subtle and local differences for distinguishing the subcategories. Importantly, neither object nor part annotations are used in our proposed approach, which avoids the heavy labor consumption of labeling. Comparing with more than 10 state-of-the-art methods on 4 widely-used datasets, our OPAM approach achieves the best performance.
In this work, we present a novel mask guided attention (MGA) method for fine-grained patchy image classification. The key challenge of fine-grained patchy image classification lies in two folds, ultra-fine-grained inter-category variances among objects and very few data available for training. This motivates us to consider employing more useful supervision signal to train a discriminative model within limited training samples. Specifically, the proposed MGA integrates a pre-trained semantic segmentation model that produces auxiliary supervision signal, i.e., patchy attention mask, enabling a discriminative representation learning. The patchy attention mask drives the classifier to filter out the insignificant parts of images (e.g., common features between different categories), which enhances the robustness of MGA for the fine-grained patchy image classification. We verify the effectiveness of our method on three publicly available patchy image datasets. Experimental results demonstrate that our MGA method achieves superior performance on three datasets compared with the state-of-the-art methods. In addition, our ablation study shows that MGA improves the accuracy by 2.25% and 2% on the SoyCultivarVein and BtfPIS datasets, indicating its practicality towards solving the fine-grained patchy image classification.
Fine-grained visual classification aims to recognize images belonging to multiple sub-categories within a same category. It is a challenging task due to the inherently subtle variations among highly-confused categories. Most existing methods only take an individual image as input, which may limit the ability of models to recognize contrastive clues from different images. In this paper, we propose an effective method called progressive co-attention network (PCA-Net) to tackle this problem. Specifically, we calculate the channel-wise similarity by encouraging interaction between the feature channels within same-category image pairs to capture the common discriminative features. Considering that complementary information is also crucial for recognition, we erase the prominent areas enhanced by the channel interaction to force the network to focus on other discriminative regions. The proposed model has achieved competitive results on three fine-grained visual classification benchmark datasets: CUB-200-2011, Stanford Cars, and FGVC Aircraft.
Metric-based few-shot fine-grained image classification (FSFGIC) aims to learn a transferable feature embedding network by estimating the similarities between query images and support classes from very few examples. In this work, we propose, for the first time, to introduce the non-linear data projection concept into the design of FSFGIC architecture in order to address the limited sample problem in few-shot learning and at the same time to increase the discriminability of the model for fine-grained image classification. Specifically, we first design a feature re-abstraction embedding network that has the ability to not only obtain the required semantic features for effective metric learning but also re-enhance such features with finer details from input images. Then the descriptors of the query images and the support classes are projected into different non-linear spaces in our proposed similarity metric learning network to learn discriminative projection factors. This design can effectively operate in the challenging and restricted condition of a FSFGIC task for making the distance between the samples within the same class smaller and the distance between samples from different classes larger and for reducing the coupling relationship between samples from different categories. Furthermore, a novel similarity measure based on the proposed non-linear data project is presented for evaluating the relationships of feature information between a query image and a support set. It is worth to note that our proposed architecture can be easily embedded into any episodic training mechanisms for end-to-end training from scratch. Extensive experiments on FSFGIC tasks demonstrate the superiority of the proposed methods over the state-of-the-art benchmarks.