No Arabic abstract
In this paper, we attempt to provide a privacy-preserving and efficient solution for the similar patient search problem among several parties (e.g., hospitals) by addressing the shortcomings of previous attempts. We consider a scenario in which each hospital has its own genomic dataset and the goal of a physician (or researcher) is to search for a patient similar to a given one (based on a genomic makeup) among all the hospitals in the system. To enable this search, we let each hospital encrypt its dataset with its own key and outsource the storage of its dataset to a public cloud. The physician can get authorization from multiple hospitals and send a query to the cloud, which efficiently performs the search across authorized hospitals using a privacy-preserving index structure. We propose a hierarchical index structure to index each hospitals dataset with low memory requirements. Furthermore, we develop a novel privacy-preserving index merging mechanism that generates a common search index from individual indices of each hospital to significantly improve the search efficiency. We also consider the storage of medical information associated with genomic data of a patient (e.g., diagnosis and treatment). We allow access to this information via a fine-grained access control policy that we develop through the combination of standard symmetric encryption and ciphertext policy attribute-based encryption. Using this mechanism, a physician can search for similar patients and obtain medical information about the matching records if the access policy holds. We conduct experiments on large-scale genomic data and show the efficiency of the proposed scheme. Notably, we show that under our experimental settings, the proposed scheme is more than $60$ times faster than Wang et al.s protocol and $95$ times faster than Asharov et al.s solution.
Genome sequencing technology has advanced at a rapid pace and it is now possible to generate highly-detailed genotypes inexpensively. The collection and analysis of such data has the potential to support various applications, including personalized medical services. While the benefits of the genomics revolution are trumpeted by the biomedical community, the increased availability of such data has major implications for personal privacy; notably because the genome has certain essential features, which include (but are not limited to) (i) an association with traits and certain diseases, (ii) identification capability (e.g., forensics), and (iii) revelation of family relationships. Moreover, direct-to-consumer DNA testing increases the likelihood that genome data will be made available in less regulated environments, such as the Internet and for-profit companies. The problem of genome data privacy thus resides at the crossroads of computer science, medicine, and public policy. While the computer scientists have addressed data privacy for various data types, there has been less attention dedicated to genomic data. Thus, the goal of this paper is to provide a systematization of knowledge for the computer science community. In doing so, we address some of the (sometimes erroneous) beliefs of this field and we report on a survey we conducted about genome data privacy with biomedical specialists. Then, after characterizing the genome privacy problem, we review the state-of-the-art regarding privacy attacks on genomic data and strategies for mitigating such attacks, as well as contextualizing these attacks from the perspective of medicine and public policy. This paper concludes with an enumeration of the challenges for genome data privacy and presents a framework to systematize the analysis of threats and the design of countermeasures as the field moves forward.
Trusted execution environments (TEE) such as Intels Software Guard Extension (SGX) have been widely studied to boost security and privacy protection for the computation of sensitive data such as human genomics. However, a performance hurdle is often generated by SGX, especially from the small enclave memory. In this paper, we propose a new Hybrid Secured Flow framework (called HySec-Flow) for large-scale genomic data analysis using SGX platforms. Here, the data-intensive computing tasks can be partitioned into independent subtasks to be deployed into distinct secured and non-secured containers, therefore allowing for parallel execution while alleviating the limited size of Page Cache (EPC) memory in each enclave. We illustrate our contributions using a workflow supporting indexing, alignment, dispatching, and merging the execution of SGX- enabled containers. We provide details regarding the architecture of the trusted and untrusted components and the underlying Scorn and Graphene support as generic shielding execution frameworks to port legacy code. We thoroughly evaluate the performance of our privacy-preserving reads mapping algorithm using real human genome sequencing data. The results demonstrate that the performance is enhanced by partitioning the time-consuming genomic computation into subtasks compared to the conventional execution of the data-intensive reads mapping algorithm in an enclave. The proposed HySec-Flow framework is made available as an open-source and adapted to the data-parallel computation of other large-scale genomic tasks requiring security and scalable computational resources.
In Near-Neighbor Search (NNS), a new client queries a database (held by a server) for the most similar data (near-neighbors) given a certain similarity metric. The Privacy-Preserving variant (PP-NNS) requires that neither server nor the client shall learn information about the other partys data except what can be inferred from the outcome of NNS. The overwhelming growth in the size of current datasets and the lack of a truly secure server in the online world render the existing solutions impractical; either due to their high computational requirements or non-realistic assumptions which potentially compromise privacy. PP-NNS having query time {it sub-linear} in the size of the database has been suggested as an open research direction by Li et al. (CCSW15). In this paper, we provide the first such algorithm, called Secure Locality Sensitive Indexing (SLSI) which has a sub-linear query time and the ability to handle honest-but-curious parties. At the heart of our proposal lies a secure binary embedding scheme generated from a novel probabilistic transformation over locality sensitive hashing family. We provide information theoretic bound for the privacy guarantees and support our theoretical claims using substantial empirical evidence on real-world datasets.
Security and confidentiality of big data stored in the cloud are important concerns for many organizations to adopt cloud services. One common approach to address the concerns is client-side encryption where data is encrypted on the client machine before being stored in the cloud. Having encrypted data in the cloud, however, limits the ability of data clustering, which is a crucial part of many data analytics applications, such as search systems. To overcome the limitation, in this paper, we present an approach named ClustCrypt for efficient topic-based clustering of encrypted unstructured big data in the cloud. ClustCrypt dynamically estimates the optimal number of clusters based on the statistical characteristics of encrypted data. It also provides clustering approach for encrypted data. We deploy ClustCrypt within the context of a secure cloud-based semantic search system (S3BD). Experimental results obtained from evaluating ClustCrypt on three datasets demonstrate on average 60% improvement on clusters coherency. ClustCrypt also decreases the search-time overhead by up to 78% and increases the accuracy of search results by up to 35%
In this paper, we propose GraphSE$^2$, an encrypted graph database for online social network services to address massive data breaches. GraphSE$^2$ preserves the functionality of social search, a key enabler for quality social network services, where social search queries are conducted on a large-scale social graph and meanwhile perform set and computational operations on user-generated contents. To enable efficient privacy-preserving social search, GraphSE$^2$ provides an encrypted structural data model to facilitate parallel and encrypted graph data access. It is also designed to decompose complex social search queries into atomic operations and realise them via interchangeable protocols in a fast and scalable manner. We build GraphSE$^2$ with various queries supported in the Facebook graph search engine and implement a full-fledged prototype. Extensive evaluations on Azure Cloud demonstrate that GraphSE$^2$ is practical for querying a social graph with a million of users.