Do you want to publish a course? Click here

Normal Forms for Rigid $mathfrak{C}_{2,1}$ Hypersurfaces $M^5 subset mathbb{C}^3$

134   0   0.0 ( 0 )
 Publication date 2019
  fields
and research's language is English
 Authors Zhangchi Chen




Ask ChatGPT about the research

Consider a $2$-nondegenerate constant Levi rank $1$ rigid $mathcal{C}^omega$ hypersurface $M^5 subset mathbb{C}^3$ in coordinates $(z, zeta, w = u + iv)$: [ u = Fbig(z,zeta,bar{z},bar{zeta}big). ] The Gaussier-Merker model $u=frac{zbar{z}+ frac{1}{2}z^2bar{zeta}+frac{1}{2} bar{z}^2 zeta}{1-zeta bar{zeta}}$ was shown by Fels-Kaup 2007 to be locally CR-equivalent to the light cone ${x_1^2+x_2^2-x_3^2=0}$. Another representation is the tube $u=frac{x^2}{1-y}$. Inspired by Alexander Isaev, we study rigid biholomorphisms: [ (z,zeta,w) longmapsto big( f(z,zeta), g(z,zeta), rho,w+h(z,zeta) big) =: (z,zeta,w). ] The G-M model has 7-dimensional rigid automorphisms group. A Cartan-type reduction to an e-structure was done by Foo-Merker-Ta in 1904.02562. Three relative invariants appeared: $V_0$, $I_0$ (primary) and $Q_0$ (derived). In Pocchiolas formalism, Section 8 provides a finalized expression for $Q_0$. The goal is to establish the Poincare-Moser complete normal form: [ u = frac{zbar{z}+frac{1}{2},z^2bar{zeta} +frac{1}{2},bar{z}^2zeta}{ 1-zetabar{zeta}} + sum_{a,b,c,d atop a+cgeqslant 3}, G_{a,b,c,d}, z^azeta^bbar{z}^cbar{zeta}^d, ] with $0 = G_{a,b,0,0} = G_{a,b,1,0} = G_{a,b,2,0}$ and $0 = G_{3,0,0,1} = {rm Im}, G_{3,0,1,1}$. We apply the method of Chen-Merker 1908.07867 to catch (relative) invariants at every point, not only at the central point, as the coefficients $G_{0,1,4,0}$, $G_{0, 2, 3, 0}$, ${rm Re} G_{3,0,1,1}$. With this, a brige Poincare $longleftrightarrow$ Cartan is constructed. In terms of $F$, the numerators of $V_0$, $I_0$, $Q_0$ incorporate 11, 52, 824 differential monomials.

rate research

Read More

64 - Wei Guo Foo 2019
We study the local equivalence problem for real-analytic ($mathcal{C}^omega$) hypersurfaces $M^5 subset mathbb{C}^3$ which, in coordinates $(z_1, z_2, w) in mathbb{C}^3$ with $w = u+i, v$, are rigid: [ u ,=, Fbig(z_1,z_2,overline{z}_1,overline{z}_2big), ] with $F$ independent of $v$. Specifically, we study the group ${sf Hol}_{sf rigid}(M)$ of rigid local biholomorphic transformations of the form: [ big(z_1,z_2,wbig) longmapsto Big( f_1(z_1,z_2), f_2(z_1,z_2), a,w + g(z_1,z_2) Big), ] where $a in mathbb{R} backslash {0}$ and $frac{D(f_1,f_2)}{D(z_1,z_2)} eq 0$, which preserve rigidity of hypersurfaces. After performing a Cartan-type reduction to an appropriate ${e}$-structure, we find exactly two primary invariants $I_0$ and $V_0$, which we express explicitly in terms of the $5$-jet of the graphing function $F$ of $M$. The identical vanishing $0 equiv I_0 big( J^5F big) equiv V_0 big( J^5F big)$ then provides a necessary and sufficient condition for $M$ to be locally rigidly-biholomorphic to the known model hypersurface: [ M_{sf LC} colon u ,=, frac{z_1,overline{z}_1 +frac{1}{2},z_1^2overline{z}_2 +frac{1}{2},overline{z}_1^2z_2}{ 1-z_2overline{z}_2}. ] We establish that $dim, {sf Hol}_{sf rigid} (M) leq 7 = dim, {sf Hol}_{sf rigid} big( M_{sf LC} big)$ always. If one of these two primary invariants $I_0 otequiv 0$ or $V_0 otequiv 0$ does not vanish identically, we show that this rigid equivalence problem between rigid hypersurfaces reduces to an equivalence problem for a certain $5$-dimensional ${e}$-structure on $M$.
We show that the boundary of any bounded strongly pseudoconvex complete circular domain in $mathbb C^2$ must contain points that are exceptionally tangent to a projective image of the unit sphere.
We develop a method for proving sup-norm and Holder estimates for $overline{partial}$ on wide class of finite type pseudoconvex domains in $mathbb{C}^n$. A fundamental obstruction to proving sup-norm estimates is the possibility of singular complex curves with exceptionally high order of contact with the boundary. Our method handles this problem, and in $mathbb{C}^3$, we prove sup-norm and Holder estimates for all bounded, pseudoconvex domains with real-analytic boundary.
This paper examines the relationship between certain non-commutative analogues of projective 3-space, $mathbb{P}^3$, and the quantized enveloping algebras $U_q(mathfrak{sl}_2)$. The relationship is mediated by certain non-commutative graded algebras $S$, one for each $q in mathbb{C}^times$, having a degree-two central element $c$ such that $S[c^{-1}]_0 cong U_q(mathfrak{sl}_2)$. The non-commutative analogues of $mathbb{P}^3$ are the spaces $operatorname{Proj}_{nc}(S)$. We show how the points, fat points, lines, and quadrics, in $operatorname{Proj}_{nc}(S)$, and their incidence relations, correspond to finite dimensional irreducible representations of $U_q(mathfrak{sl}_2)$, Verma modules, annihilators of Verma modules, and homomorphisms between them.
We compute the exact norms of the Leray transforms for a family $mathcal{S}_{beta}$ of unbounded hypersurfaces in two complex dimensions. The $mathcal{S}_{beta}$ generalize the Heisenberg group, and provide local projective approximations to any smooth, strongly $mathbb{C}$-convex hypersurface $mathcal{S}_{beta}$ to two orders of tangency. This work is then examined in the context of projective dual $CR$-structures and the corresponding pair of canonical dual Hardy spaces associated to $mathcal{S}_{beta}$, leading to a universal description of the Leray transform and a factorization of the transform through orthogonal projection onto the conjugate dual Hardy space.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا