Do you want to publish a course? Click here

Global well-posedness for the fifth-order KdV equation in $H^{-1}(mathbb{R})$

112   0   0.0 ( 0 )
 Added by Rowan Killip
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We prove global well-posedness of the fifth-order Korteweg-de Vries equation on the real line for initial data in $H^{-1}(mathbb{R})$. By comparison, the optimal regularity for well-posedness on the torus is known to be $L^2(mathbb{R}/mathbb{Z})$. In order to prove this result, we develop a strategy for integrating the local smoothing effect into the method of commuting flows introduced previously in the context of KdV. It is this synthesis that allows us to go beyond the known threshold on the torus.

rate research

Read More

73 - Zihua Guo , Yifei Wu 2016
We prove that the derivative nonlinear Schr{o}dinger equation is globally well-posed in $H^{frac 12} (mathbb{R})$ when the mass of initial data is strictly less than $4pi$.
313 - Tadahiro Oh , Yuzhao Wang 2018
We study well-posedness of the complex-valued modified KdV equation (mKdV) on the real line. In particular, we prove local well-posedness of mKdV in modulation spaces $M^{2,p}_{s}(mathbb{R})$ for $s ge frac14$ and $2leq p < infty$. For $s < frac 14$, we show that the solution map for mKdV is not locally uniformly continuous in $M^{2,p}_{s}(mathbb{R})$. By combining this local well-posedness with our previous work (2018) on an a priori global-in-time bound for mKdV in modulation spaces, we also establish global well-posedness of mKdV in $M^{2,p}_{s}(mathbb{R})$ for $s ge frac14$ and $2leq p < infty$.
91 - Zihua Guo 2009
We prove that the Korteweg-de Vries initial-value problem is globally well-posed in $H^{-3/4}(R)$ and the modified Korteweg-de Vries initial-value problem is globally well-posed in $H^{1/4}(R)$. The new ingredient is that we use directly the contraction principle to prove local well-posedness for KdV equation at $s=-3/4$ by constructing some special resolution spaces in order to avoid some logarithmic divergence from the high-high interactions. Our local solution has almost the same properties as those for $H^s (s>-3/4)$ solution which enable us to apply the I-method to extend it to a global solution.
We prove that the cubic nonlinear Schrodinger equation (both focusing and defocusing) is globally well-posed in $H^s(mathbb R)$ for any regularity $s>-frac12$. Well-posedness has long been known for $sgeq 0$, see [51], but not previously for any $s<0$. The scaling-critical value $s=-frac12$ is necessarily excluded here, since instantaneous norm inflation is known to occur [11, 38, 46]. We also prove (in a parallel fashion) well-posedness of the real- and complex-valued modified Korteweg-de Vries equations in $H^s(mathbb R)$ for any $s>-frac12$. The best regularity achieved previously was $sgeq tfrac14$; see [15, 24, 32, 38]. An essential ingredient in our arguments is the demonstration of a local smoothing effect for both equations, with a gain of derivatives matching that of the underlying linear equation. This in turn rests on the discovery of a one-parameter family of microscopic conservation laws that remain meaningful at this low regularity.
331 - Tristan Roy 2017
We prove global well-posedness for the $3D$ radial defocusing cubic wave equation with data in $H^{s} times H^{s-1}$, $1>s>{7/10}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا