Do you want to publish a course? Click here

Ontologies for the Virtual Materials Marketplace

55   0   0.0 ( 0 )
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The Virtual Materials Marketplace (VIMMP) project, which develops an open platform for providing and accessing services related to materials modelling, is presented with a focus on its ontology development and data technology aspects. Within VIMMP, a system of marketplace-level ontologies is developed to characterize services, models, and interactions between users; the European Materials and Modelling Ontology (EMMO) is employed as a top-level ontology. The ontologies are used to annotate data that are stored in the ZONTAL Space component of VIMMP and to support the ingest and retrieval of data and metadata at the VIMMP marketplace frontend.



rate research

Read More

In the materials design domain, much of the data from materials calculations are stored in different heterogeneous databases. Materials databases usually have different data models. Therefore, the users have to face the challenges to find the data from adequate sources and integrate data from multiple sources. Ontologies and ontology-based techniques can address such problems as the formal representation of domain knowledge can make data more available and interoperable among different systems. In this paper, we introduce the Materials Design Ontology (MDO), which defines concepts and relations to cover knowledge in the field of materials design. MDO is designed using domain knowledge in materials science (especially in solid-state physics), and is guided by the data from several databases in the materials design field. We show the application of the MDO to materials data retrieved from well-known materials databases.
Artificial intelligence shows promise for solving many practical societal problems in areas such as healthcare and transportation. However, the current mechanisms for AI model diffusion such as Github code repositories, academic project webpages, and commercial AI marketplaces have some limitations; for example, a lack of monetization methods, model traceability, and model auditabilty. In this work, we sketch guidelines for a new AI diffusion method based on a decentralized online marketplace. We consider the technical, economic, and regulatory aspects of such a marketplace including a discussion of solutions for problems in these areas. Finally, we include a comparative analysis of several current AI marketplaces that are already available or in development. We find that most of these marketplaces are centralized commercial marketplaces with relatively few models.
Ontology-mediated query answering (OMQA) is a promising approach to data access and integration that has been actively studied in the knowledge representation and database communities for more than a decade. The vast majority of work on OMQA focuses on conjunctive queries, whereas more expressive queries that feature counting or other forms of aggregation remain largely unex-plored. In this paper, we introduce a general form of counting query, relate it to previous proposals, and study the complexity of answering such queries in the presence of DL-Lite ontologies. As it follows from existing work that query answering is intractable and often of high complexity, we consider some practically relevant restrictions, for which we establish improved complexity bounds.
We present NaturalOWL, a natural language generation system that produces texts describing individuals or classes of OWL ontologies. Unlike simpler OWL verbalizers, which typically express a single axiom at a time in controlled, often not entirely fluent natural language primarily for the benefit of domain experts, we aim to generate fluent and coherent multi-sentence texts for end-users. With a system like NaturalOWL, one can publish information in OWL on the Web, along with automatically produced corresponding texts in multiple languages, making the information accessible not only to computer programs and domain experts, but also end-users. We discuss the processing stages of NaturalOWL, the optional domain-dependent linguistic resources that the system can use at each stage, and why they are useful. We also present trials showing that when the domain-dependent llinguistic resources are available, NaturalOWL produces significantly better texts compared to a simpler verbalizer, and that the resources can be created with relatively light effort.
The cloud computing paradigm offers clients ubiquitous and on demand access to a shared pool of computing resources, enabling the clients to provision scalable services with minimal management effort. Such a pool of resources, however, is typically owned and controlled by a single service provider, making it a single-point-of-failure. This paper presents Kosto - a framework that provisions a fair marketplace for secure outsourced computations, wherein the pool of computing resources aggregates resources offered by a large cohort of independent compute nodes. Kosto protects the confidentiality of clients inputs as well as the integrity of the outsourced computations and their results using trusted hardwares enclave execution, in particular Intel SGX. Furthermore, Kosto warrants fair exchanges between the clients payments for the execution of an outsourced computations and the compute nodes work in servicing the clients requests. Empirical evaluation on the prototype implementation of Kosto shows that performance overhead incurred by enclave execution is as small as 3% for computation-intensive operations, and 1.5x for IO-intensive operations.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا