Primordial black holes (PBHs) are black holes which may form in the early Universe through the gravitational collapse of primordial cosmological density fluctuations. Due to Hawking radiation these PBHs are supposed to evaporate by emitting particles. Recent developments in the experimental searching for evaporating PBHs in the local Universe are reviewed. The multimessenger techniques of searching for signals from evaporating PBHs are discussed.
Many early universe theories predict the creation of Primordial Black Holes (PBHs). The PBHs could have masses ranging from the Planck mass to 10^5 solar masses or higher depending on the formation scenario. Hawking showed that any Black Hole (BH) has a temperature which is inversely proportional to its mass. Hence a sufficiently small BH will thermodynamically radiate particles at an ever-increasing rate, continually decreasing its mass and raising its temperature. The final moments of this evaporation phase should be explosive. In this work, we investigate the final few seconds of the BH burst using the Standard Model of particle physics and calculate the energy dependent burst time profiles in the GeV/TeV range. We use the HAWC (High Altitude Water Cherenkov) observatory as a case study and calculate PBH burst light curves which would be observed by HAWC.
Primordial black holes (PBHs) from the early Universe have been connected with the nature of dark matter and can significantly affect cosmological history. We show that coincidence dark radiation and density fluctuation gravitational wave signatures associated with evaporation of $lesssim 10^9$ g PBHs can be used to explore and discriminate different formation scenarios of spinning and non-spinning PBHs spanning orders of magnitude in mass-range, which is challenging to do otherwise.
Primordial Black Holes (PBHs) are gravitationally collapsed objects that may have been created by density fluctuations in the early universe and could have arbitrarily small masses down to the Planck scale. Hawking showed that due to quantum effects, a black hole has a temperature inversely proportional to its mass and will emit all species of fundamental particles thermally. PBHs with initial masses of ~5.0 x 10^14 g should be expiring in the present epoch with bursts of high-energy particles, including gamma radiation in the GeV - TeV energy range. The Milagro high energy observatory, which operated from 2000 to 2008, is sensitive to the high end of the PBH evaporation gamma-ray spectrum. Due to its large field-of-view, more than 90% duty cycle and sensitivity up to 100 TeV gamma rays, the Milagro observatory is well suited to perform a search for PBH bursts. Based on a search on the Milagro data, we report new PBH burst rate density upper limits over a range of PBH observation times. In addition, we report the sensitivity of the Milagro successor, the High Altitude Water Cherenkov (HAWC) observatory, to PBH evaporation events.
Primordial Black Holes (PBHs) are of interest in many cosmological contexts. PBHs lighter than about 1012 kg are predicted to be directly detectable by their Hawking radiation. This radiation should produce both a diffuse extragalactic gamma-ray background from the cosmologically-averaged distribution of PBHs and gamma-ray burst signals from individual light black holes. The Fermi, Milagro, Veritas, HESS and HAWC observatories, in combination with new burst recognition methodologies, offer the greatest sensitivity for the detection of such black holes or placing limits on their existence.
Primordial black holes (PBHs) from the early Universe constitute a viable dark matter (DM) candidate and can span many orders of magnitude in mass. Light PBHs with masses around $10^{15}$ g contribute to DM and will efficiently evaporate through Hawking radiation at present time, leading to a slew of observable signatures. The emission will deposit energy and heat in the surrounding interstellar medium. We revisit the constraints from dwarf galaxy heating by evaporating non-spinning PBHs and find that conservative constraints from Leo T dwarf galaxy are significantly weaker than previously suggested. Furthermore, we analyse gas heating from spinning evaporating PBHs. The resulting limits on PBH DM abundance are found to be stronger for evaporating spinning PBHs than for non-spinning PBHs.