Do you want to publish a course? Click here

Use of Artificial Intelligence to Analyse Risk in Legal Documents for a Better Decision Support

55   0   0.0 ( 0 )
 Added by Jayanta Mandi
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Assessing risk for voluminous legal documents such as request for proposal; contracts is tedious and error prone. We have developed risk-o-meter, a framework, based on machine learning and natural language processing to review and assess risks of any legal document. Our framework uses Paragraph Vector, an unsupervised model to generate vector representation of text. This enables the framework to learn contextual relations of legal terms and generate sensible context aware embedding. The framework then feeds the vector space into a supervised classification algorithm to predict whether a paragraph belongs to a per-defined risk category or not. The framework thus extracts risk prone paragraphs. This technique efficiently overcomes the limitations of keyword-based search. We have achieved an accuracy of 91% for the risk category having the largest training dataset. This framework will help organizations optimize effort to identify risk from large document base with minimal human intervention and thus will help to have risk mitigated sustainable growth. Its machine learning capability makes it scalable to uncover relevant information from any type of document apart from legal documents, provided the library is per-populated and rich.



rate research

Read More

The COVID-19 crisis has brought about new clinical questions, new workflows, and accelerated distributed healthcare needs. While artificial intelligence (AI)-based clinical decision support seemed to have matured, the application of AI-based tools for COVID-19 has been limited to date. In this perspective piece, we identify opportunities and requirements for AI-based clinical decision support systems and highlight challenges that impact AI readiness for rapidly emergent healthcare challenges.
An automated system that could assist a judge in predicting the outcome of a case would help expedite the judicial process. For such a system to be practically useful, predictions by the system should be explainable. To promote research in developing such a system, we introduce ILDC (Indian Legal Documents Corpus). ILDC is a large corpus of 35k Indian Supreme Court cases annotated with original court decisions. A portion of the corpus (a separate test set) is annotated with gold standard explanations by legal experts. Based on ILDC, we propose the task of Court Judgment Prediction and Explanation (CJPE). The task requires an automated system to predict an explainable outcome of a case. We experiment with a battery of baseline models for case predictions and propose a hierarchical occlusion based model for explainability. Our best prediction model has an accuracy of 78% versus 94% for human legal experts, pointing towards the complexity of the prediction task. The analysis of explanations by the proposed algorithm reveals a significant difference in the point of view of the algorithm and legal experts for explaining the judgments, pointing towards scope for future research.
Legal artificial intelligence (LegalAI) aims to benefit legal systems with the technology of artificial intelligence, especially natural language processing (NLP). Recently, inspired by the success of pre-trained language models (PLMs) in the generic domain, many LegalAI researchers devote their effort to apply PLMs to legal tasks. However, utilizing PLMs to address legal tasks is still challenging, as the legal documents usually consist of thousands of tokens, which is far longer than the length that mainstream PLMs can process. In this paper, we release the Longformer-based pre-trained language model, named as Lawformer, for Chinese legal long documents understanding. We evaluate Lawformer on a variety of LegalAI tasks, including judgment prediction, similar case retrieval, legal reading comprehension, and legal question answering. The experimental results demonstrate that our model can achieve promising improvement on tasks with long documents as inputs.
Guided troubleshooting is an inherent task in the domain of technical support services. When a customer experiences an issue with the functioning of a technical service or a product, an expert user helps guide the customer through a set of steps comprising a troubleshooting procedure. The objective is to identify the source of the problem through a set of diagnostic steps and observations, and arrive at a resolution. Procedures containing these set of diagnostic steps and observations in response to different problems are common artifacts in the body of technical support documentation. The ability to use machine learning and linguistics to understand and leverage these procedures for applications like intelligent chatbots or robotic process automation, is crucial. Existing research on question answering or intelligent chatbots does not look within procedures or deep-understand them. In this paper, we outline a system for mining procedures from technical support documents. We create models for solving important subproblems like extraction of procedures, identifying decision points within procedures, identifying blocks of instructions corresponding to these decision points and mapping instructions within a decision block. We also release a dataset containing our manual annotations on publicly available support documents, to promote further research on the problem.
The rise of Artificial Intelligence (AI) will bring with it an ever-increasing willingness to cede decision-making to machines. But rather than just giving machines the power to make decisions that affect us, we need ways to work cooperatively with AI systems. There is a vital need for research in AI and Cooperation that seeks to understand the ways in which systems of AIs and systems of AIs with people can engender cooperative behavior. Trust in AI is also key: trust that is intrinsic and trust that can only be earned over time. Here we use the term AI in its broadest sense, as employed by the recent 20-Year Community Roadmap for AI Research (Gil and Selman, 2019), including but certainly not limited to, recent advances in deep learning. With success, cooperation between humans and AIs can build society just as human-human cooperation has. Whether coming from an intrinsic willingness to be helpful, or driven through self-interest, human societies have grown strong and the human species has found success through cooperation. We cooperate in the small -- as family units, with neighbors, with co-workers, with strangers -- and in the large as a global community that seeks cooperative outcomes around questions of commerce, climate change, and disarmament. Cooperation has evolved in nature also, in cells and among animals. While many cases involving cooperation between humans and AIs will be asymmetric, with the human ultimately in control, AI systems are growing so complex that, even today, it is impossible for the human to fully comprehend their reasoning, recommendations, and actions when functioning simply as passive observers.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا