No Arabic abstract
We study the globular clusters (GCs) in the spiral galaxy NGC~5907 well-known for its spectacular stellar stream -- to better understand its origin. Using wide-field Subaru/Suprime-Cam $gri$ images and deep Keck/DEIMOS multi-object spectroscopy, we identify and obtain the kinematics of several GCs superimposed on the stellar stream and the galaxy disk. We estimate the total number of globular clusters in NGC 5907 to be $154pm44$, with a specific frequency of $0.73pm0.21$. Our analysis also reveals a significant, new population of young star cluster candidates found mostly along the outskirts of the stellar disk. Using the properties of the stream GCs, we estimate that the disrupted galaxy has a stellar mass similar to the Sagittarius dwarf galaxy accreted by the Milky Way, i.e. $sim10^8~M_odot$.
Stellar streams have become central to studies of the interaction histories of nearby galaxies. To characterize the most prominent parts of the stellar stream around the well-known nearby (d = 17 Mpc) edge-on disk galaxy NGC 5907, we have obtained and analyzed new, deep gri Subaru/Suprime-Cam and 3.6 micron Spitzer/Infrared Array Camera (IRAC) observations. Combining the near-infrared 3.6 micron data with visible-light images allows us to use a long wavelength baseline to estimate the metallicity and age of the stellar population along a ~60 kpc long segment of the stream. We have fitted the stellar spectral energy distribution (SED) with a single-burst stellar population synthesis model and we use it to distinguish between the proposed satellite accretion and minor/major merger formation models of the stellar stream around this galaxy. We conclude that a massive minor merger (stellar mass ratio of at least 1:8) can best account for the metallicity of -0.3 inferred along the brightest parts of the stream.
We report on the extent of the effects of the Milky Ways gravitational field in shaping the structural parameters and internal dynamics of its globular cluster population. We make use of a homogeneous, up-to-date data set with kinematics, structural properties, current and initial masses of 156 globular clusters. In general, cluster radii increase as the Milky Way potential weakens; with the core and Jacobi radii being those which increase at the slowest and fastest rate respectively. We interpret this result as the innermost regions of globular clusters being less sensitive to changes in the tidal forces with the Galactocentric distance. The Milky Ways gravitational field also seems to have differentially accelerated the internal dynamical evolution of individual clusters, with those toward the bulge appearing dynamically older. Finally we find a sub-population consisting of both compact and extended globular clusters (as defined by their rh/rJ ratio) beyond 8 kpc that appear to have lost a large fraction of their initial mass lost via disruption. Moreover, we identify a third group with rh/rJ > 0.4, which have lost an even larger fraction of their initial mass by disruption. In both cases the high fraction of mass lost is likely due to their large orbital eccentricities and inclination angles, which lead to them experiencing more tidal shocks at perigalacticon and during disc crossings. Comparing the structural and orbital parameters of individual clusters allows for constraints to be placed on whether or not their evolution was relaxation or tidally dominated.
We examine the spatial clustering of blue horizontal branch (BHB) stars from the $textit{u}$-band of the Canada-France Imaging Survey (CFIS, a component of the Ultraviolet Near-Infrared Optical Northern Survey, or UNIONS). All major groupings of stars are associated with previously known satellites, and among these is NGC 5466, a distant (16 kpc) globular cluster. NGC 5466 reportedly possesses a long stellar stream, although no individual members of the stream have previously been identified. Using both BHBs and more numerous red giant branch stars cross-matched to $textit{Gaia}$ Data Release 2, we identify extended tidal tails from NGC 5466 that are both spatially and kinematically coherent. Interestingly, we find that this stream does not follow the same path as the previous detection at large distances from the cluster. We trace the stream across 31$^{circ}$ of sky and show that it exhibits a very strong distance gradient ranging from 10 $<$ R$_{helio}$ $<$ 30 kpc. We compare our observations to simple dynamical models of the stream and find that they are able to broadly reproduce the overall path and kinematics. The fact that NGC 5466 is so distant, traces a wide range of Galactic distances, has an identified progenitor, and appears to have recently had an interaction with the Galaxys disk, makes it a unique test-case for dynamical modelling of the Milky Way.
$Context$. The assembly history experienced by the Milky Way is currently being unveiled thanks to the data provided by the $Gaia$ mission. It is likely that the globular cluster system of our Galaxy has followed a similarly intricate formation path. $Aims$. To constrain this formation path, we explore the link between the globular clusters and the known merging events that the Milky Way has experienced. $Methods$. To this end, we combined the kinematic information provided by $Gaia$ for almost all Galactic clusters, with the largest sample of cluster ages available after carefully correcting for systematic errors. To identify clusters with a common origin we analysed their dynamical properties, particularly in the space of integrals of motion. $Results$. We find that about 40% of the clusters likely formed in situ. A similarly large fraction, 35%, appear to be possibly associated to known merger events, in particular to $Gaia$-Enceladus (19%), the Sagittarius dwarf galaxy (5%), the progenitor of the Helmi streams (6%), and to the Sequoia galaxy (5%), although some uncertainty remains due to the degree of overlap in their dynamical characteristics. Of the remaining clusters, 16% are tentatively associated to a group with high binding energy, while the rest are all on loosely bound orbits and likely have a more heterogeneous origin. The resulting age-metallicity relations are remarkably tight and differ in their detailed properties depending on the progenitor, providing further confidence on the associations made. $Conclusions$. We provide a table listing the likely associations. Improved kinematic data by future Gaia data releases and especially a larger, systematic error-free sample of cluster ages would help to further solidify our conclusions.
Here we examine the Milky Ways GC system to estimate the fraction of accreted versus in situ formed GCs. We first assemble a high quality database of ages and metallicities for 93 Milky Way GCs from literature deep colour-magnitude data. The age-metallicity relation for the Milky Ways GCs reveals two distinct tracks -- one with near constant old age of ~12.8 Gyr and the other branches to younger ages. We find that the latter young track is dominated by globular clusters associated with the Sagittarius and Canis Major dwarf galaxies. Despite being overly simplistic, its age-metallicity relation can be well represented by a simple closed box model with continuous star formation. The inferred chemical enrichment history is similar to that of the Large Magellanic Cloud, but is more enriched, at a given age, compared to the Small Magellanic Cloud. After excluding Sagittarius and Canis Major GCs, several young track GCs remain. Their horizontal branch morphologies are often red and hence classified as Young Halo objects, however they do not tend to reveal extended horizontal branches (a possible signature of an accreted remnant nucleus). Retrograde orbit GCs (a key signature of accretion) are commonly found in the young track. We also examine GCs that lie close to the Fornax-Leo-Sculptor great circle defined by several satellite galaxies. We find that several GCs are consistent with the young track and we speculate that they may have been accreted along with their host dwarf galaxy, whose nucleus may survive as a GC. Finally, we suggest that 27-47 GCs (about 1/4 of the entire system), from 6-8 dwarf galaxies, were accreted to build the Milky Way GC system we seen today.