No Arabic abstract
Zirconium pentatetelluride, ZrTe5, shows remarkable sensitivity to hydrostatic pressure. In this work we address the high-pressure transport and optical properties of this compound, on samples grown by flux and charge vapor transport. The high-pressure resistivity is measured up to 2 GPa, and the infrared transmission up to 9 GPa. The dc conductivity anisotropy is determined using a microstructured sample. Together, the transport and optical measurements allow us to discern band parameters with and without the hydrostatic pressure, in particular the Fermi level, and the effective mass in the less conducting, out-of-plane direction. The results are interpreted within a simple two-band model characterized by a Dirac-like, linear in-plane band dispersion, and a parabolic out-of-plane dispersion.
Three dimensional (3D) topological Dirac materials are under intensive study recently. The layered compound ZrTe$_5$ has been suggested to be one of them by transport and ARPES experiments. Here, we perform infrared reflectivity measurement to investigate the underlying physics of this material. The derived optical conductivity exhibits linear increasing with frequency below normal interband transitions, which provides the first optical spectroscopic proof of a 3D Dirac semimetal. Apart from that, the plasma edge shifts dramatically to lower energy upon temperature cooling, which might be associated with the consequence of lattice parameter shrinking. In addition, an extremely sharp peak shows up in the frequency dependent optical conductivity, indicating the presence of a Van Hove singularity in the joint density of state.
ZrTe$_5$ is a newly discovered topological material. Shortly after a single layer ZrTe$_5$ had been predicted to be a two-dimensional topological insulator, a handful of experiments have been carried out on bulk ZrTe$_5$ crystals, which however suggest that its bulk form may be a three-dimensional topological Dirac semimetal. We report the first transport study on ultra thin ZrTe$_5$ flakes down to 10 nm. A significant modulation of the characteristic resistivity maximum in the temperature dependence by thickness has been observed. Remarkably, the metallic behavior, occurring only below about 150 K in bulk, persists to over 320 K for flakes less than 20 nm thick. Furthermore, the resistivity maximum can be greatly tuned by ionic gating. Combined with the Hall resistance, we identify contributions from a semiconducting and a semimetallic bands. The enhancement of the metallic state in thin flakes are consequence of shifting of the energy bands. Our results suggest that the band structure sensitively depends on the film thickness, which may explain the divergent experimental observations on bulk materials.
The temperature dependence of the optical properties of the delafossite PdCoO$_2$ has been measured in the a-b planes over a wide frequency range. The optical conductivity due to the free-carrier (intraband) response falls well below the interband transitions, allowing the plasma frequency to be determined from the $f$-sum rule. Drude-Lorentz fits to the complex optical conductivity yield estimates for the free-carrier plasma frequency and scattering rate. The in-plane plasma frequency has also been calculated using density functional theory. The experimentally-determined and calculated values for the plasma frequencies are all in good agreement; however, at low temperature the optically-determined scattering rate is much larger than the estimate for the transport scattering rate, indicating a strong frequency-dependent renormalization of the optical scattering rate. In addition to the expected in-plane infrared-active modes, two very strong features are observed that are attributed to the coupling of the in-plane carriers to the out-of-plane longitudinal optic modes.
We use first-principles methods to reveal that in ZrTe$_5$, a layered van der Waals material like graphite, atomic displacements corresponding to five of the six zone-center A$_g$ (symmetry-preserving) phonon modes can drive a topological phase transition from strong to weak topological insulator with a Dirac semimetal state emerging at the transition, giving rise to a Dirac topology surface in the multi-dimensional space formed by the A$_g$ phonon modes. This implies that the topological phase transition in ZrTe$_5$ can be realized with many different settings of external stimuli that are capable of penetrating through the phonon-space Dirac surface without breaking the crystallographic symmetry. Furthermore, we predict that domains with effective mass of opposite signs can be created by laser pumping and will host Weyl modes of opposite chirality propagating along the domain boundaries. Studying phonon-space topology surfaces provides a new route to understanding and utilizing the exotic physical properties of ZrTe$_5$ and related quantum materials.
We have performed a systematic high-momentum-resolution photoemission study on ZrTe$_5$ using $6$ eV photon energy. We have measured the band structure near the $Gamma$ point, and quantified the gap between the conduction and valence band as $18 leq Delta leq 29$ meV. We have also observed photon-energy-dependent behavior attributed to final-state effects and the 3D nature of the materials band structure. Our interpretation indicates the gap is intrinsic and reconciles discrepancies on the existence of a topological surface state reported by different studies. The existence of a gap suggests that ZrTe$_5$ is not a 3D strong topological insulator nor a 3D Dirac semimetal. Therefore, our experiment is consistent with ZrTe$_5$ being a 3D weak topological insulator.