No Arabic abstract
This paper reports observations of a 22 GHz water maser `superburst in the G25.65+1.05 massive star forming region, conducted in response to an alert from the Maser Monitoring Organisation (M2O). Very long baseline interferometry (VLBI) observations using the European VLBI Network (EVN) recorded a maser flux density of $1.2 times 10^{4}$ Jy. The superburst was investigated in the spectral, structural and temporal domains and its cause was determined to be an increase in maser path length generated by the superposition of multiple maser emitting regions aligning in the line of sight to the observer. This conclusion was based on the location of the bursting maser in the context of the star forming region, its complex structure, and its rapid onset and decay.
In a rare and spectacular display, two well-known massive star forming regions, W49N and G25.65+1.05, recently underwent maser super burst - their fluxes suddenly increasing above 30,000 and 18,000 Jy, respectively, reaching several orders of magnitude above their usual values. In quick-response, ToO observations with the EVN, VLBA and KaVA were obtained constituting a 4 week campaign - producing a high-cadence multi-epoch VLBI investigation of the maser emission. The combination of high-resolution, polarisation and flux monitoring during the burst provides one of the best accounts, to date, of the maser super burst phenomenon, aiding their use as astrophysical tools. These proceedings contain the preliminary results of our campaign.
We report on annual parallax and proper motion observations of H2O masers in S235AB-MIR, which is a massive young stellar object in the Perseus Arm. Using multi-epoch VLBI astrometry we measured a parallax of pi = 0.63 +- 0.03 mas, corresponding to a trigonometric distance of D = 1.56+-0.09 kpc, and source proper motion of ( u alpha cos d , u d) = (0.79 +- 0.12, -2.41 +- 0.14) mas/yr. Water masers trace a jet of diameter 15 au which exhibits a definite radial velocity gradient perpendicular to its axis. 3D maser kinematics were well modelled by a rotating cylinder with physical parameters: v_out = 45+-2 km/s, v_rot = 22+-3 km/s, i = 12+-2 degrees, which are the outflow velocity, tangential rotation velocity and line-of-sight inclination, respectively. One maser feature exhibited steady acceleration which may be related to the jet rotation. During our 15 month VLBI programme there were three `maser burst events caught `in the act which were caused by the overlapping of masers along the line of sight.
We investigate which structures the 6.7 GHz methanol masers trace in the environment of high-mass protostar candidates by observing a homogenous sample of methanol masers selected from Torun surveys. We also probed their origins by looking for associated H II regions and IR emission. We selected 30 methanol sources with improved position accuracies achieved using MERLIN and another 3 from the literature. We imaged 31 of these using the European VLBI Networks expanded array of telescopes with 5-cm (6-GHz) receivers. We used the VLA to search for 8.4 GHz radio continuum counterparts and inspected Spitzer GLIMPSE data at 3.6-8 um from the archive. High angular resolution images allowed us to analyze the morphology and kinematics of the methanol masers in great detail and verify their association with radio continuum and mid-infrared emission. A new class of ring-like methanol masers in star--forming regions appeared to be suprisingly common, 29 % of the sample. The new morphology strongly suggests that methanol masers originate in the disc or torus around a proto- or a young massive star. However, the maser kinematics indicate the strong influence of outflow or infall. This suggests that they form at the interface between the disc/torus and a flow. This is also strongly supported by Spitzer results because the majority of the masers coincide with 4.5 um emission to within less than 1 arcsec. Only four masers are associated with the central parts of UC H II regions. This implies that 6.7 GHz methanol maser emission occurs before H II region observable at cm wavelengths is formed.
In this Letter, we report detections of SiO v=3 J=1--0 maser emission in very long baseline interferometric (VLBI) observations towards 4 out of 12 long-period variable stars: WX Psc, R Leo, W Hya, and T Cep. The detections towards WX Psc and T Cep are new ones. We also present successful astrometric observations of SiO v=2 and v=3 J=1--0 maser emissions associated with two stars: WX Psc and W Hya and their position-reference continuum sources: J010746.0+131205 and J135146.8-291218 with the VLBI Exploration of Radio Astrometry (VERA). The relative coordinates of the position-reference continuum source and SiO v=3 maser spots were measured with respect to those of an SiO v=2 maser spot adopted as fringe-phase reference. Thus the faint continuum sources were inversely phase-referenced to the bright maser sources. It implies possible registration of multiple SiO maser line maps onto a common coordinate system with 10 microarcsecond-level accuracy.
Water masers are good tracers of high-mass star-forming regions. Water maser VLBI observations provide a good probe to study high-mass star formation and the galactic structure. We plan to make a blind survey toward the northern Galactic plane in future years using 25m radio telescope of Xinjiang Astronomical Observatory. We will select some water maser sources discovered in the survey and make high resolution observations and study the gas kinematics close to the high-mass protostar.