Do you want to publish a course? Click here

Example-Guided Scene Image Synthesis using Masked Spatial-Channel Attention and Patch-Based Self-Supervision

152   0   0.0 ( 0 )
 Added by Haitian Zheng
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Example-guided image synthesis has been recently attempted to synthesize an image from a semantic label map and an exemplary image. In the task, the additional exemplary image serves to provide style guidance that controls the appearance of the synthesized output. Despite the controllability advantage, the previous models are designed on datasets with specific and roughly aligned objects. In this paper, we tackle a more challenging and general task, where the exemplar is an arbitrary scene image that is semantically unaligned to the given label map. To this end, we first propose a new Masked Spatial-Channel Attention (MSCA) module which models the correspondence between two unstructured scenes via cross-attention. Next, we propose an end-to-end network for joint global and local feature alignment and synthesis. In addition, we propose a novel patch-based self-supervision scheme to enable training. Experiments on the large-scale CCOO-stuff dataset show significant improvements over existing methods. Moreover, our approach provides interpretability and can be readily extended to other tasks including style and spatial interpolation or extrapolation, as well as other content manipulation.



rate research

Read More

Example-guided image synthesis has recently been attempted to synthesize an image from a semantic label map and an exemplary image. In the task, the additional exemplar image provides the style guidance that controls the appearance of the synthesized output. Despite the controllability advantage, the existing models are designed on datasets with specific and roughly aligned objects. In this paper, we tackle a more challenging and general task, where the exemplar is an arbitrary scene image that is semantically different from the given label map. To this end, we first propose a Masked Spatial-Channel Attention (MSCA) module which models the correspondence between two arbitrary scenes via efficient decoupled attention. Next, we propose an end-to-end network for joint global and local feature alignment and synthesis. Finally, we propose a novel self-supervision task to enable training. Experiments on the large-scale and more diverse COCO-stuff dataset show significant improvements over the existing methods. Moreover, our approach provides interpretability and can be readily extended to other content manipulation tasks including style and spatial interpolation or extrapolation.
Example-guided image synthesis aims to synthesize an image from a semantic label map and an exemplary image indicating style. We use the term style in this problem to refer to implicit characteristics of images, for example: in portraits style includes gender, racial identity, age, hairstyle; in full body pictures it includes clothing; in street scenes, it refers to weather and time of day and such like. A semantic label map in these cases indicates facial expression, full body pose, or scene segmentation. We propose a solution to the example-guided image synthesis problem using conditional generative adversarial networks with style consistency. Our key contributions are (i) a novel style consistency discriminator to determine whether a pair of images are consistent in style; (ii) an adaptive semantic consistency loss; and (iii) a training data sampling strategy, for synthesizing style-consistent results to the exemplar.
Image captioning has attracted ever-increasing research attention in the multimedia community. To this end, most cutting-edge works rely on an encoder-decoder framework with attention mechanisms, which have achieved remarkable progress. However, such a framework does not consider scene concepts to attend visual information, which leads to sentence bias in caption generation and defects the performance correspondingly. We argue that such scene concepts capture higher-level visual semantics and serve as an important cue in describing images. In this paper, we propose a novel scene-based factored attention module for image captioning. Specifically, the proposed module first embeds the scene concepts into factored weights explicitly and attends the visual information extracted from the input image. Then, an adaptive LSTM is used to generate captions for specific scene types. Experimental results on Microsoft COCO benchmark show that the proposed scene-based attention module improves model performance a lot, which outperforms the state-of-the-art approaches under various evaluation metrics.
Previous work has demonstrated learning isolated 3D objects (voxel grids, point clouds, meshes, etc.) from 2D-only self-supervision. Here we set out to extend this to entire 3D scenes made out of multiple objects, including their location, orientation and type, and the scenes illumination. Once learned, we can map arbitrary 2D images to 3D scene structure. We analyze why analysis-by-synthesis-like losses for supervision of 3D scene structure using differentiable rendering is not practical, as it almost always gets stuck in local minima of visual ambiguities. This can be overcome by a novel form of training: we use an additional network to steer the optimization itself to explore the full gamut of possible solutions ie to be curious, and hence, to resolve those ambiguities and find workable minima. The resulting system converts 2D images of different virtual or real images into complete 3D scenes, learned only from 2D images of those scenes.
We address representation learning for large-scale instance-level image retrieval. Apart from backbone, training pipelines and loss functions, popular approaches have focused on different spatial pooling and attention mechanisms, which are at the core of learning a powerful global image representation. There are different forms of attention according to the interaction of elements of the feature tensor (local and global) and the dimensions where it is applied (spatial and channel). Unfortunately, each study addresses only one or two forms of attention and applies it to different problems like classification, detection or retrieval. We present global-local attention module (GLAM), which is attached at the end of a backbone network and incorporates all four forms of attention: local and global, spatial and channel. We obtain a new feature tensor and, by spatial pooling, we learn a powerful embedding for image retrieval. Focusing on global descriptors, we provide empirical evidence of the interaction of all forms of attention and improve the state of the art on standard benchmarks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا