Do you want to publish a course? Click here

All the attention you need: Global-local, spatial-channel attention for image retrieval

81   0   0.0 ( 0 )
 Added by Yannis Avrithis
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We address representation learning for large-scale instance-level image retrieval. Apart from backbone, training pipelines and loss functions, popular approaches have focused on different spatial pooling and attention mechanisms, which are at the core of learning a powerful global image representation. There are different forms of attention according to the interaction of elements of the feature tensor (local and global) and the dimensions where it is applied (spatial and channel). Unfortunately, each study addresses only one or two forms of attention and applies it to different problems like classification, detection or retrieval. We present global-local attention module (GLAM), which is attached at the end of a backbone network and incorporates all four forms of attention: local and global, spatial and channel. We obtain a new feature tensor and, by spatial pooling, we learn a powerful embedding for image retrieval. Focusing on global descriptors, we provide empirical evidence of the interaction of all forms of attention and improve the state of the art on standard benchmarks.



rate research

Read More

We present a convolution-free approach to video classification built exclusively on self-attention over space and time. Our method, named TimeSformer, adapts the standard Transformer architecture to video by enabling spatiotemporal feature learning directly from a sequence of frame-level patches. Our experimental study compares different self-attention schemes and suggests that divided attention, where temporal attention and spatial attention are separately applied within each block, leads to the best video classification accuracy among the design choices considered. Despite the radically new design, TimeSformer achieves state-of-the-art results on several action recognition benchmarks, including the best reported accuracy on Kinetics-400 and Kinetics-600. Finally, compared to 3D convolutional networks, our model is faster to train, it can achieve dramatically higher test efficiency (at a small drop in accuracy), and it can also be applied to much longer video clips (over one minute long). Code and models are available at: https://github.com/facebookresearch/TimeSformer.
We present a novel attention-based mechanism for learning enhanced point features for tasks such as point cloud classification and segmentation. Our key message is that if the right attention point is selected, then one point is all you need -- not a sequence as in a recurrent model and not a pre-selected set as in all prior works. Also, where the attention point is should be learned, from data and specific to the task at hand. Our mechanism is characterized by a new and simple convolution, which combines the feature at an input point with the feature at its associated attention point. We call such a point a directional attention point (DAP), since it is found by adding to the original point an offset vector that is learned by maximizing the task performance in training. We show that our attention mechanism can be easily incorporated into state-of-the-art point cloud classification and segmentation networks. Extensive experiments on common benchmarks such as ModelNet40, ShapeNetPart, and S3DIS demonstrate that our DAP-enabled networks consistently outperform the respective original networks, as well as all other competitive alternatives, including those employing pre-selected sets of attention points.
Recurrent Neural Networks (RNNs) have long been the dominant architecture in sequence-to-sequence learning. RNNs, however, are inherently sequential models that do not allow parallelization of their computations. Transformers are emerging as a natural alternative to standard RNNs, replacing recurrent computations with a multi-head attention mechanism. In this paper, we propose the SepFormer, a novel RNN-free Transformer-based neural network for speech separation. The SepFormer learns short and long-term dependencies with a multi-scale approach that employs transformers. The proposed model achieves state-of-the-art (SOTA) performance on the standard WSJ0-2/3mix datasets. It reaches an SI-SNRi of 22.3 dB on WSJ0-2mix and an SI-SNRi of 19.5 dB on WSJ0-3mix. The SepFormer inherits the parallelization advantages of Transformers and achieves a competitive performance even when downsampling the encoded representation by a factor of 8. It is thus significantly faster and it is less memory-demanding than the latest speech separation systems with comparable performance.
91 - Chuhan Wu , Fangzhao Wu , Tao Qi 2021
Transformer is a powerful model for text understanding. However, it is inefficient due to its quadratic complexity to input sequence length. Although there are many methods on Transformer acceleration, they are still either inefficient on long sequences or not effective enough. In this paper, we propose Fastformer, which is an efficient Transformer model based on additive attention. In Fastformer, instead of modeling the pair-wise interactions between tokens, we first use additive attention mechanism to model global contexts, and then further transform each token representation based on its interaction with global context representations. In this way, Fastformer can achieve effective context modeling with linear complexity. Extensive experiments on five datasets show that Fastformer is much more efficient than many existing Transformer models and can meanwhile achieve comparable or even better long text modeling performance.
437 - Yuan Cheng , Yanbo Xue 2021
Click-through rate (CTR) prediction is a critical problem in web search, recommendation systems and online advertisement displaying. Learning good feature interactions is essential to reflect users preferences to items. Many CTR prediction models based on deep learning have been proposed, but researchers usually only pay attention to whether state-of-the-art performance is achieved, and ignore whether the entire framework is reasonable. In this work, we use the discrete choice model in economics to redefine the CTR prediction problem, and propose a general neural network framework built on self-attention mechanism. It is found that most existing CTR prediction models align with our proposed general framework. We also examine the expressive power and model complexity of our proposed framework, along with potential extensions to some existing models. And finally we demonstrate and verify our insights through some experimental results on public datasets.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا