Do you want to publish a course? Click here

CLD -- A Detector Concept for the FCC-ee

61   0   0.0 ( 0 )
 Added by Marko Petri\\v{c}
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

This note gives a conceptual description and illustration of the CLD detector, based on the work for a detector at CLIC. CLD is one of the detectors envisaged at a future 100 km $e^+e^-$ circular collider (FCC-ee). The note also contains a brief description of the simulation and reconstruction tools used in the linear collider community, which have been adapted for physics and performance studies of CLD. The detector performance is described in terms of single particles, particles in jets, jet energy and angular resolution, and flavour tagging. The impact of beam-related backgrounds (incoherent $e^+e^-$ pairs and synchrotron radiation photons) on the performance is also discussed.



rate research

Read More

118 - Guy Wilkinson 2021
Equipping an experiment at FCC-ee with particle identification (PID) capabilities, in particular the ability to distinguish between hadron species, would bring great benefits to the physics programme. Good PID is essential for precise studies in quark flavour physics, and is also a great asset for many measurements in tau, top and Higgs physics. The requirements placed by flavour physics and these other applications are surveyed, with an emphasis on the momentum range over which PID is necessary. Possible solutions are discussed, including classical RICH counters, time-of-flight systems, and d$E$/d$x$ and cluster counting. Attention is paid to the impact on the global detector design that including PID capabilities would imply.
122 - A. Blondel , J. Gluza , S. Jadach 2019
The Future Circular Collider (FCC) at CERN, a proposed 100-km circular facility with several colliders in succession, culminates with a 100 TeV proton-proton collider. It offers a vast new domain of exploration in particle physics, with orders of magnitude advances in terms of Precision, Sensitivity and Energy. The implementation plan foresees, as a first step, an Electroweak Factory electron-positron collider. This high luminosity facility, operating between 90 and 365 GeV centre-of-mass energy, will study the heavy particles of the Standard Model, Z, W, Higgs, and top with unprecedented accuracy. The Electroweak Factory $e^+e^-$ collider constitutes a real challenge to the theory and to precision calculations, triggering the need for the development of new mathematical methods and software tools. A first workshop in 2018 had focused on the first FCC-ee stage, the Tera-Z, and confronted the theoretical status of precision Standard Model calculations on the Z-boson resonance to the experimental demands. The second workshop in January 2019, which is reported here, extended the scope to the next stages, with the production of W-bosons (FCC-ee-W), the Higgs boson (FCC-ee-H) and top quarks (FCC-ee-tt). In particular, the theoretical precision in the determination of the crucial input parameters, alpha_QED, alpha_QCD, M_W, m_t at the level of FCC-ee requirements is thoroughly discussed. The requirements on Standard Model theory calculations were spelled out, so as to meet the demanding accuracy of the FCC-ee experimental potential. The discussion of innovative methods and tools for multi-loop calculations was deepened. Furthermore, phenomenological analyses beyond the Standard Model were discussed, in particular the effective theory approaches. The reports of 2018 and 2019 serve as white papers of the workshop results and subsequent developments.
A fiber detector concept is suggested allowing to registrate particles within less than 100 nsec with a space point precision of about 0.1 mm at low occuppancy. The fibers should be radiation hard for 1 Mrad/year. Corresponding prototypes have been build and tested at a 3 GeV electron beam at DESY. Preliminary results of these tests indicate that the design goal for the detector is reached.
407 - T. G. White 2011
Using the simulation framework of the SiD detector to study the Higgs -> mumu decay channel showed a considerable gain in signal significance could be achieved through an increase in charged particle momentum resolution. However more detailed simulations of theZ -> mumu decay channel demonstrated that significant improvement in the resolution could not be achieved through an increase in tracker granularity. Conversely detector stability studies into missing/dead vertex layers using longer lived particles displayed an increase in track resolution. The existing 9.15 cm x 25 {mu}m silicon strip geometry was replaced with 100 x 100 micrometers silicon pixels improving secondary vertex resolution by a factor of 100. Study into highly collimated events through the use of dense jets showed that momentum resolution can be increased by a factor of 2, greatly improving signal significance but requiring a reduction in pixel size to 25 micrometers. An upgrade of the tracker granularity from the 9.15 cm strips to micrometer sized pixels requires an increase in number and complexity of sensor channels yet provides only a small improvement in the majority of linear collider physics.
This document answers in simple terms many FAQs about FCC-ee, including comparisons with other colliders. It complements the FCC-ee CDR and the FCC Physics CDR by addressing many questions from non-experts and clarifying issues raised during the European Strategy symposium in Granada, with a view to informing discussions in the period between now and the final endorsement by the CERN Council in 2020 of the European Strategy Group recommendations. This document will be regularly updated as more questions appear or new information becomes available.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا