Do you want to publish a course? Click here

Theory for the FCC-ee : Report on the 11th FCC-ee Workshop

123   0   0.0 ( 0 )
 Added by Janusz Gluza Dr
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

The Future Circular Collider (FCC) at CERN, a proposed 100-km circular facility with several colliders in succession, culminates with a 100 TeV proton-proton collider. It offers a vast new domain of exploration in particle physics, with orders of magnitude advances in terms of Precision, Sensitivity and Energy. The implementation plan foresees, as a first step, an Electroweak Factory electron-positron collider. This high luminosity facility, operating between 90 and 365 GeV centre-of-mass energy, will study the heavy particles of the Standard Model, Z, W, Higgs, and top with unprecedented accuracy. The Electroweak Factory $e^+e^-$ collider constitutes a real challenge to the theory and to precision calculations, triggering the need for the development of new mathematical methods and software tools. A first workshop in 2018 had focused on the first FCC-ee stage, the Tera-Z, and confronted the theoretical status of precision Standard Model calculations on the Z-boson resonance to the experimental demands. The second workshop in January 2019, which is reported here, extended the scope to the next stages, with the production of W-bosons (FCC-ee-W), the Higgs boson (FCC-ee-H) and top quarks (FCC-ee-tt). In particular, the theoretical precision in the determination of the crucial input parameters, alpha_QED, alpha_QCD, M_W, m_t at the level of FCC-ee requirements is thoroughly discussed. The requirements on Standard Model theory calculations were spelled out, so as to meet the demanding accuracy of the FCC-ee experimental potential. The discussion of innovative methods and tools for multi-loop calculations was deepened. Furthermore, phenomenological analyses beyond the Standard Model were discussed, in particular the effective theory approaches. The reports of 2018 and 2019 serve as white papers of the workshop results and subsequent developments.



rate research

Read More

This document answers in simple terms many FAQs about FCC-ee, including comparisons with other colliders. It complements the FCC-ee CDR and the FCC Physics CDR by addressing many questions from non-experts and clarifying issues raised during the European Strategy symposium in Granada, with a view to informing discussions in the period between now and the final endorsement by the CERN Council in 2020 of the European Strategy Group recommendations. This document will be regularly updated as more questions appear or new information becomes available.
118 - Guy Wilkinson 2021
Equipping an experiment at FCC-ee with particle identification (PID) capabilities, in particular the ability to distinguish between hadron species, would bring great benefits to the physics programme. Good PID is essential for precise studies in quark flavour physics, and is also a great asset for many measurements in tau, top and Higgs physics. The requirements placed by flavour physics and these other applications are surveyed, with an emphasis on the momentum range over which PID is necessary. Possible solutions are discussed, including classical RICH counters, time-of-flight systems, and d$E$/d$x$ and cluster counting. Attention is paid to the impact on the global detector design that including PID capabilities would imply.
With centre-of-mass energies covering the Z pole, the WW threshold, the HZ production, and the top-pair threshold, the FCC-ee offers unprecedented possibilities to measure the properties of the four heaviest particles of the Standard Model (the Higgs, Z, and W bosons, and the top quark), and also those of the b and c quarks and of the $tau$ lepton. At these moderate energies, the role of the calorimeters is to complement the tracking systems in an optimal (a.k.a. particle-flow) event reconstruction. In this context, precision measurements and searches for new particles can fully profit from the improved electromagnetic and hadronic object reconstruction offered by new technologies, finer transverse and longitudinal segmentation, timing capabilities, multi-signal readout, modern computing techniques and algorithms. The corresponding requirements arise in particular from the resolution on reconstructed hadronic masses, energies, and momenta, e.g., of H, W, Z, needed to reach the FCC-ee promised precision. Extreme electromagnetic energy resolutions are also instrumental for $pi^0$ identification, $tau$ exclusive decay reconstruction, and physics sensitivity to processes accessible via radiative return. We present state of the art, challenges and future developments on some of the currently most promising technologies: high-granularity silicon and scintillator readout, dual readout, noble-liquid and crystal calorimeters.
High precision experimental measurements of the properties of the Higgs boson at $sim$ 125 GeV as well as electroweak precision observables such as the W -boson mass or the effective weak leptonic mixing angle are expected at future $e^+e^-$ colliders such as the FCC-ee. This high anticipated precision has to be matched with theory predictions for the measured quantities at the same level of accuracy. We briefly summarize the status of these predictions within the Standard Model (SM) and of the tools that are used for their determination. We outline how the theory predictions will have to be improved in order to reach the required accuracy, and also comment on the simulation frameworks for the Higgs and EW precision program.
This note gives a conceptual description and illustration of the CLD detector, based on the work for a detector at CLIC. CLD is one of the detectors envisaged at a future 100 km $e^+e^-$ circular collider (FCC-ee). The note also contains a brief description of the simulation and reconstruction tools used in the linear collider community, which have been adapted for physics and performance studies of CLD. The detector performance is described in terms of single particles, particles in jets, jet energy and angular resolution, and flavour tagging. The impact of beam-related backgrounds (incoherent $e^+e^-$ pairs and synchrotron radiation photons) on the performance is also discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا