Do you want to publish a course? Click here

Augmented Skew-Symetric System for Shallow-Water System with Surface Tension Allowing Large Gradient of Density

70   0   0.0 ( 0 )
 Added by Nicolas Cellier
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In this paper, we introduce a new extended version of the shallow water equations with surface tension which is skew-symmetric with respect to the L2 scalar product and allows for large gradients of fluid height. This result is a generalization of the results published by P. Noble and J.-P. Vila in [SIAM J. Num. Anal. (2016)] and by D. Bresch, F. Couderc, P. Noble and J.P. Vila in [C.R. Acad. Sciences Paris (2016)] which are restricted to quadratic forms of the capillary energy respectively in the one dimensional and two dimensional setting.This is also an improvement of the results by J. Lallement, P. Villedieu et al. published in [AIAA Aviation Forum 2018] where the augmented version is not skew-symetric with respect to the L2 scalar product. Based on this new formulation, we propose a new numerical scheme and perform a nonlinear stability analysis.Various numerical simulations of the shallow water equations are presented to show differences between quadratic (w.r.t the gradient of the height) and general surface tension energy when high gradients of the fluid height occur.



rate research

Read More

126 - Didier Bresch 2010
The purpose of this paper is to derive rigorously the so called viscous shallow water equations given for instance page 958-959 in [A. Oron, S.H. Davis, S.G. Bankoff, Rev. Mod. Phys, 69 (1997), 931?980]. Such a system of equations is similar to compressible Navier-Stokes equations for a barotropic fluid with a non-constant viscosity. To do that, we consider a layer of incompressible and Newtonian fluid which is relatively thin, assuming no surface tension at the free surface. The motion of the fluid is described by 3d Navier-Stokes equations with constant viscosity and free surface. We prove that for a set of suitable initial data (asymptotically close to shallow water initial data), the Cauchy problem for these equations is well-posed, and the solution converges to the solution of viscous shallow water equations. More precisely, we build the solution of the full problem as a perturbation of the strong solution to the viscous shallow water equations. The method of proof is based on a Lagrangian change of variable that fixes the fluid domain and we have to prove the well-posedness in thin domains: we have to pay a special attention to constants in classical Sobolev inequalities and regularity in Stokes problem.
434 - Yupei Huang , Chunjing Xie 2020
In this paper, we investigate the formation of singularity for general two dimensional and radially symmetric solutions for rotating shallow water system from different aspects. First, the formation of singularity is proved via the study for the associated moments for two dimensional solutions. For the radial symmetric solutions, the formation of singularity is established for the initial data with compact support. Finally, the global existence or formation of singularity for the radial symmetric solutions of the rotating shallow water system are analyzed in detail when the solutions are of the form with separated variables.
We study local-time well-posedness and breakdown for solutions of regularized Saint-Venant equations (regularized classical shallow water equations) recently introduced by Clamond and Dutykh. The system is linearly non-dispersive, and smooth solutions conserve an $H^1$-equivalent energy. No shock discontinuities can occur, but the system is known to admit weakly singular shock-profile solutions that dissipate energy. We identify a class of small-energy smooth solutions that develop singularities in the first derivatives in finite time.
The standard multilayer Saint-Venant system consists in introducing fluid layers that are advected by the interfacial velocities. As a consequence there is no mass exchanges between these layers and each layer is described by its height and its average velocity. Here we introduce another multilayer system with mass exchanges between the neighborhing layers where the unknowns are a total height of water and an average velocity per layer. We derive it from Navier-Stokes system with an hydrostatic pressure and prove energy and hyperbolicity properties of the model. We also give a kinetic interpretation leading to effective numerical schemes with positivity and energy properties. Numerical tests show the versatility of the approach and its ability to compute recirculation cases with wind forcing.
We study classical solutions of one dimensional rotating shallow water system which plays an important role in geophysical fluid dynamics. The main results contain two contrasting aspects. First, when the solution crosses certain threshold, we prove finite-time singularity formation for the classical solutions by studying the weighted gradients of Riemann invariants and utilizing conservation of physical energy. In fact, the singularity formation will take place for a large class of ${C}^1$ initial data whose gradients and physical energy can be arbitrarily small and higher order derivatives should be large. Second, when the initial data have constant potential vorticity, global existence of small classical solutions is established via studying an equivalent form of a quasilinear Klein-Gordon equation satisfying certain null conditions. In this global existence result, the smallness condition is in terms of the higher order Sobolev norms of the initial data.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا