Do you want to publish a course? Click here

Favorite-Candidate Voting for Eliminating the Least Popular Candidate in Metric Spaces

69   0   0.0 ( 0 )
 Added by Chenhao Wang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We study single-candidate voting embedded in a metric space, where both voters and candidates are points in the space, and the distances between voters and candidates specify the voters preferences over candidates. In the voting, each voter is asked to submit her favorite candidate. Given the collection of favorite candidates, a mechanism for eliminating the least popular candidate finds a committee containing all candidates but the one to be eliminated. Each committee is associated with a social value that is the sum of the costs (utilities) it imposes (provides) to the voters. We design mechanisms for finding a committee to optimize the social value. We measure the quality of a mechanism by its distortion, defined as the worst-case ratio between the social value of the committee found by the mechanism and the optimal one. We establish new upper and lower bounds on the distortion of mechanisms in this single-candidate voting, for both general metrics and well-motivated special cases.



rate research

Read More

Given a set of agents with approval preferences over each other, we study the task of finding $k$ matchings fairly representing everyones preferences. We model the problem as an approval-based multiwinner election where the set of candidates consists of all possible matchings and agents preferences over each other are lifted to preferences over matchings. Due to the exponential number of candidates in such elections, standard algorithms for classical sequential voting rules (such as those proposed by Thiele and Phragmen) are rendered inefficient. We show that the computational tractability of these rules can be regained by exploiting the structure of the approval preferences. Moreover, we establish algorithmic results and axiomatic guarantees that go beyond those obtainable in the general multiwinner setting. Assuming that approvals are symmetric, we show that proportional approval voting (PAV), a well-established but computationally intractable voting rule, becomes polynomial-time computable, and its sequential variant (seq-PAV), which does not provide any proportionality guarantees in general, fulfills a rather strong guarantee known as extended justified representation. Some of our positive computational results extend to other types of compactly representable elections with an exponential candidate space.
In this paper, we propose a pseudo polynomial size LP formulation for finding a payoff vector in the least core of a weighted voting game. The numbers of variables and constraints in our formulation are both bounded by $mbox{O}(n W_+)$, where $n$ is the number of players and $W_+$ is the total sum of (integer) voting weights. When we employ our formulation, a commercial LP solver calculates a payoff vector in the least core of practical weighted voting games in a few seconds. We also extend our approach to vector weighted voting games.
Candidate control of elections is the study of how adding or removing candidates can affect the outcome. However, the traditional study of the complexity of candidate control is in the model in which all candidates and votes are known up front. This paper develops a model for studying online control for elections where the structure is sequential with respect to the candidates, and in which the decision regarding adding and deleting must be irrevocably made at the moment the candidate is presented. We show that great complexity---PSPACE-completeness---can occur in this setting, but we also provide within this setting polynomial-time algorithms for the most important of election systems, plurality.
We study the facility location games with candidate locations from a mechanism design perspective. Suppose there are n agents located in a metric space whose locations are their private information, and a group of candidate locations for building facilities. The authority plans to build some homogeneous facilities among these candidates to serve the agents, who bears a cost equal to the distance to the closest facility. The goal is to design mechanisms for minimizing the total/maximum cost among the agents. For the single-facility problem under the maximum-cost objective, we give a deterministic 3-approximation group strategy-proof mechanism, and prove that no deterministic (or randomized) strategy-proof mechanism can have an approximation ratio better than 3 (or 2). For the two-facility problem on a line, we give an anonymous deterministic group strategy-proof mechanism that is (2n-3)-approximation for the total-cost objective, and 3-approximation for the maximum-cost objective. We also provide (asymptotically) tight lower bounds on the approximation ratio.
The Chamberlin-Courant and Monroe rules are fundamental and well-studied rules in the literature of multi-winner elections. The problem of determining if there exists a committee of size k that has a Chamberlin-Courant (respectively, Monroe) score of at most r is known to be NP-complete. We consider the following natural problems in this setting: a) given a committee S of size k as input, is it an optimal k-sized committee, and b) given a candidate c and a committee size k, does there exist an optimal k-sized committee that contains c? In this work, we resolve the complexity of both problems for the Chamberlin-Courant and Monroe voting rules in the settings of rankings as well as approval ballots. We show that verifying if a given committee is optimal is coNP-complete whilst the latter problem is complete for $Theta_{2}^{P}$. We also demonstrate efficient algorithms for the second problem when the input consists of single-peaked rankings. Our contribution fills an essential gap in the literature for these important multi-winner rules.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا