Do you want to publish a course? Click here

Combinatorial model for m-cluster categories in type E

131   0   0.0 ( 0 )
 Added by Lisa Lamberti
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We revisit the geometric description of cluster categories in type E in terms of colored diagonals in a polygon and generalize it to the case of m-cluster categories. As an application, we relate colored diagonals in a polygon to semi-standard Young tableaux, in type E_6,E_7,E_8. This provides a new compatibility description of semi--standard Young tableaux in Grassmannian cluster algebras in type E_6, E_8 and in a sub-cluster algebra of type E_7.



rate research

Read More

165 - Carolina Benedetti 2011
We provide a Hopf algebra structure on the space of superclass functions on the unipotent upper triangular group of type D over a finite field based on a supercharacter theory constructed by Andre and Neto. Also, we make further comments with respect to types B and C. Type A was explores by M. Aguiar et. al (2010), thus this paper is a contribution to understand combinatorially the supercharacter theory of the other classical Lie types.
We present an LLT-type formula for a general power of the nabla operator applied to the Cauchy product for the modified Macdonald polynomials, and use it to deduce a new proof of the generalized shuffle theorem describing $ abla^k e_n$, and the Elias-Hogancamp formula for $( abla^k p_1^n,e_n)$ as corollaries. We give a direct proof of the theorem by verifying that the LLT expansion satisfies the defining properties of $ abla^k$, such as triangularity in the dominance order, as well as a geometric proof based on a method for counting bundles on $mathbb{P}^1$ due to the second author. These formulas are related to an affine paving of the type A unramified affine Springer fiber studied by Goresky, Kottwitz, and MacPherson, and also to Stanleys chromatic symmetric functions.
We study monoidal categorifications of certain monoidal subcategories $mathcal{C}_J$ of finite-dimensional modules over quantum affine algebras, whose cluster algebra structures coincide and arise from the category of finite-dimensional modules over quiver Hecke algebra of type A${}_infty$. In particular, when the quantum affine algebra is of type A or B, the subcategory coincides with the monoidal category $mathcal{C}_{mathfrak{g}}^0$ introduced by Hernandez-Leclerc. As a consequence, the modules corresponding to cluster monomials are real simple modules over quantum affine algebras.
We introduce new families of combinatorial objects whose enumeration computes volumes of flow polytopes. These objects provide an interpretation, based on parking functions, of Baldoni and Vergnes generalization of a volume formula originally due to Lidskii. We recover known flow polytope volume formulas and prove new volume formulas for flow polytopes that were seemingly unapproachable. A highlight of our model is an elegant formula for the flow polytope of a graph we call the caracol graph. As by-products of our work, we uncover a new triangle of numbers that interpolates between Catalan numbers and the number of parking functions, we prove the log-concavity of rows of this triangle along with other sequences derived from volume computations, and we introduce a new Ehrhart-like polynomial for flow polytope volume and conjecture product formulas for the polytopes we consider.
343 - Ruimei Gao , Donghe Pei , 2011
In this paper, we give a basis for the derivation module of the cone over the Shi arrangement of the type $D_ell$ explicitly.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا